Sianturi, Manogari and Juwono, Ariadne L. and Anawati, Anawati (2019) Effect of Formation Voltage on the Pore Size of Porous Anodic Aluminum Oxide. In: Seminar Nasional Material (SNM 2018) : IOP Conf. Series: Materials Science and Engineering, 16–17 November 2018, Bandung, Indonesia.
Text
EffectofFormationVoltage.pdf Download (1MB) |
|
Text (Hasil_Turnitin)
HasilTurnitinEffectofFormationVoltage.pdf Download (2MB) |
Abstract
This work is aimed to clarify the effect of formation voltage on the pore size of porous anodic aluminum oxide (PAAO) layer formed on commercially pure aluminum. The PAAO layers were obtained by anodization process in 0.3 M sulfuric acid solution at constant voltages of 10, 15, 20, and 25 V at 10°C. The structure and morphology of PAAO layers were characterized by using FE-SEM. The pore diameters which were estimated by using ImageJ software were 19.61 + 15.35 nm, 20.03 + 13.59 nm, 20.31 + 12.36 nm, 25.06 + 12.10 nm, and the wall thicknesses were 33 nm, 49.99 nm, 74.97 nm, 83.33 nm for the PAAO formed at 10, 15, 20 and 25V, respectively. The structure of the porous oxide layer became more uniform and organized, and the diameter of the pores increased linearly with applied voltage. High anodization voltage is known to cause Joule heating because of the fast movement of electrons and ions. It is believed that the Joule heat was transferred to the bulk electrolyte which results in larger pore diameter and interpore distance. The optimum condition to obtain high order PAAO is at 25 V. Keywords: Porous Anodic Aluminum Oxide; Anodization; SEM
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Subjects: | SCIENCE |
Depositing User: | Mr Sahat Maruli Tua Sinaga |
Date Deposited: | 13 Jan 2025 07:33 |
Last Modified: | 13 Jan 2025 07:33 |
URI: | http://repository.uki.ac.id/id/eprint/17978 |
Actions (login required)
View Item |