

#### Universitas Kristen Indonesia Fakultas Kedokteran

#### SURAT KEPUTUSAN No. : 181/UKI.F5.D/HKP.3.5.6/2021

tentang

#### PENUGASAN TENAGA AKADEMIK DALAM MEMBERIKAN KULIAH PAKAR PIMPINAN FAKULTAS KEDOKTERAN UNIVERSITAS KRISTEN INDONESIA

**MENIMBANG** 

: Bahwa untuk kelancaran proses belajar mengajar dan meningkatkan mutu pendidi di FKUKI diperlukan penugasan tenaga akademik FKUKI untuk memberi Kuliah Pakar

**MENGINGAT** 

- 1. Peraturan Pemerintah No. 60 tahun 1999 tentang Pendidikan Tinggi
- 2. Surat Keputusan Dekan FKUKI No. 53/SK/FKUKI/11.2006 tanggal November 2006 tentang Pemberlakuan Kurikulum Berbasis Kompetensi (K di FKUKI
- 3. Surat Keputusan Rektor UKI No. 90/UKI.R/SK/SDM.8/2018 tent pengangkatan Dekan Fakultas Kedokteran UKI
- 4. Surat keputusan pengangkatan sebagai tenaga akademik

#### **MEMUTUSKAN**

**MENETAPKAN** 

: 1. Penugasan dalam memberikan Kuliah Pakar:

Nama dr. Fajar L. Gultom, Sp.PA

Departemen Patologi Anatomi

Blok 17 (Sistem Muskuloskeletal)

Judul Materi Patologi anatomi pada sistem muskuloskeletal

Semester genap 2020/2021 Kelas A: 0,21 SKS

B: 0,21 SKS

SKS 0,42 SKS

2. Apabila dikemudian hari ternyata terdapat kekeliruan dalam Surat Keputus akan diperbaiki sebagaimana mestinya

Asli Surat Keputusan ini disampaikan kepada yang bersangkutan untuk diketahui

Ditetapkan di : Jakarta
Pada tanggal : 15 April 202
Dekan,

Dr. dr. Robert Hotman Sirait, SI NIP. UKI. 031 545

Tembusan: Wakil Dekan Bidang Akademik FKUKI





# Bones, Joints and Soft Tissue Pathology

Fajar L. Gultom

Departemen Patologi Anatomik FK UKI

Mei 2021



28

29

30

31

32

Lesi meniskus, medial, dan lateral

Malformasi kongenital (genovarum, genovalgum, club

Instabilitas sendi tumit

foot, pes planus)

Claw foot, drop foot

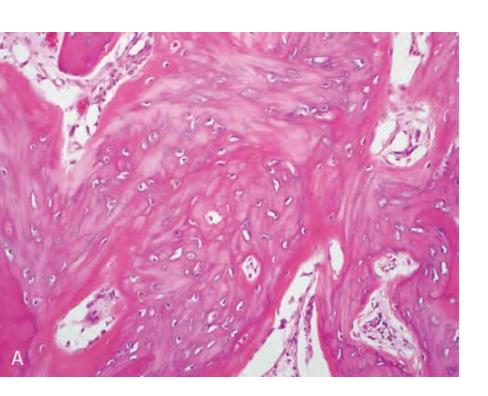
Claw hand, drop hand

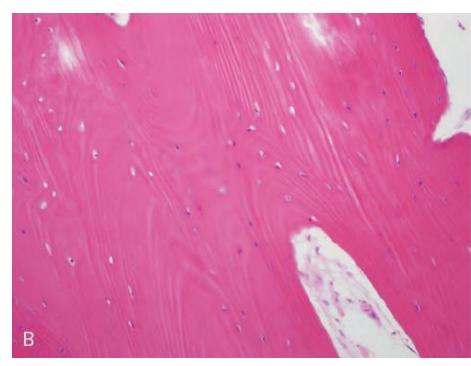
#### SISTEM MUSKULOSKELETAL

| No       | Daftar Penyakit                                                   |       | Tingkat<br>Kemampuan |                                        |    |
|----------|-------------------------------------------------------------------|-------|----------------------|----------------------------------------|----|
| Tulana d | lan Candi                                                         |       |                      |                                        |    |
| 1        | Artritis, osteoarthritis                                          |       | 3A                   |                                        |    |
| 2        | Fraktur terbuka, tertutup                                         |       | 3B                   |                                        |    |
| 3        | Fraktur klavikula                                                 |       | 3A                   |                                        |    |
| 4        | Fraktur patologis,                                                |       | 2                    |                                        |    |
| 5        | Fraktur dan dislokasi tulang belakang                             |       | 2                    |                                        |    |
| 6        | Dislokasi pada sendi ekstremitas                                  |       | 2                    |                                        |    |
| 7        | Osteogenesis imperfekta                                           |       | 1                    |                                        |    |
| 8        | Ricketsia, osteomalasia                                           |       | . 1                  | 1 _                                    |    |
| 9        | Osteoporosis                                                      | t dan | Jaringan Luna        | k                                      |    |
| 10       | Akondroplasia                                                     | 33    | Ulkus pada           | tungkai                                | 4A |
| 11       | Displasia fibrosa                                                 | 34    |                      |                                        | 3B |
| 12       | Tenosinovitis supuratif                                           |       |                      | Osteomielitis                          |    |
| 13       | Tumor tulang primer, sekunder                                     | 35    |                      | Rhabdomiosarkoma                       |    |
| 14       | Osteosarkoma                                                      | 36    | Leiomioma            | Leiomioma, leiomiosarkoma, liposarkoma |    |
| 15       | Sarcoma Ewing                                                     | 37    | Lipoma               |                                        | 4A |
| 16       | Kista ganglion                                                    | 38    | Fibromatos           | sis, fibroma, fibrosarkoma             | 1  |
| 17       | Trauma sendi                                                      |       | 3A                   |                                        |    |
| 18       | Kelainan bentuk tulang belakang (skoliosis, kifosis,<br>lordosis) |       | 2                    |                                        |    |
| 19       | Spondilitis, spondilodisitis                                      |       | 2                    |                                        |    |
| 20       | Teratoma sakrokoksigeal                                           |       | 2                    |                                        |    |
| 21       | Spondilolistesis                                                  |       | 1                    |                                        |    |
| 22       | Spondilolisis                                                     |       | 1                    |                                        |    |
| 23       | Lesi pada ligamentosa panggul                                     |       | 1                    |                                        |    |
| 24       | Displasia panggul                                                 |       | 2                    |                                        |    |
| 25       | Nekrosis kaput femoris                                            |       | 1                    |                                        |    |
| 26       | Tendinitis Achilles                                               |       | 1                    |                                        |    |
| 27       | Ruptur tendon Achilles                                            |       | 3A                   |                                        |    |

3A

2


## Bone


- Adult: 206 bones, 12% BW.
- Functions:
  - Mechanical support
  - Transmission force
  - Protection of viscera
  - Mineral homeostasis
  - Niche production of blood cells
- Extracellular matrix and specialized cells

## Matrix

- Organic component osteoid (35%) type I collagen.
- Mineral component (65%).
- Hardness → hydroxyapatite repository calcium (99%) and phosphorus (85%).
- 2 forms: woven bone lamellar bone.

# **Two Histologic Forms**





# **WOVEN VS LAMELLAR**

#### Table 26-1 Proteins of Bone Matrix

#### Osteoblast-Derived Proteins

Type I collagen

Calcium-binding proteins

Osteonectin, bone sialoprotein

Cell adhesion proteins

Osteopontin, fibronectin, thrombospondin

Cytokines

IL-1, IL-6, RANKL

Enzymes

Collagenase, alkaline phosphatase

Growth factors

IGF-1, TGF-β, PDGF

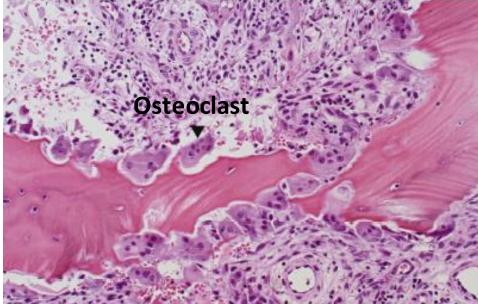
Proteins involved in mineralization

**Osteocalcin** 

#### Proteins Concentrated from Serum

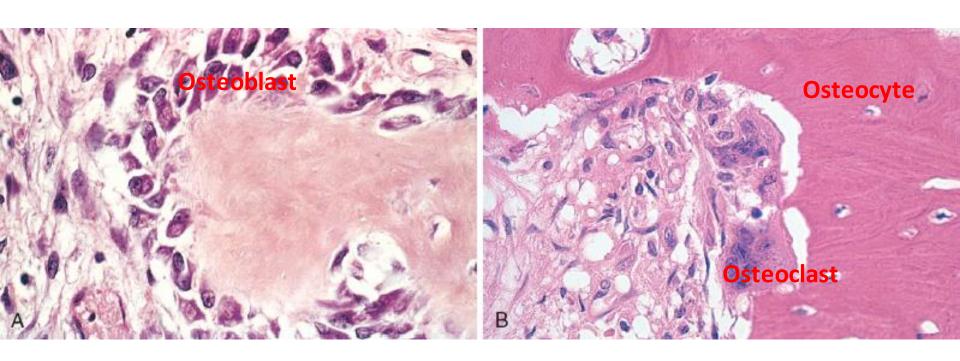
#### Albumin

#### β<sub>2</sub>-microglobulin


IGF, linsulin-like growth factor; TGF, transforming growth factor; PDGF, platelet-derived growth factor; IL, interleukin; RANKL, receptor activator of nuclear factor-κB ligand.

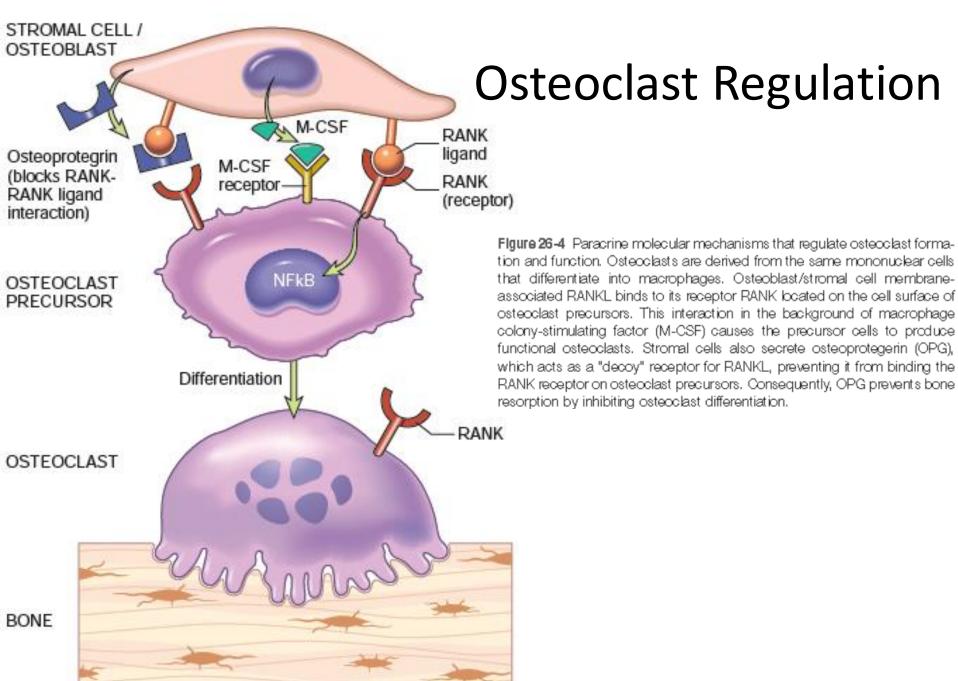
## Cells

- Osteoblasts
  - Located on surface
  - Synthesize, transport and assemble matrix
  - Regulate mineralization
- Osteocytes
   Control calcium and phosphat level
- Control Calcium and phosphat level
- Osteoclasts
  - Monocytes → Multinucleated macrophages
  - → bone resorption


# Modelling - Remodelling






# Remodelling

- Dynamic NOT static
- Homeostasis production resorption



# Homeostasis and Remodelling

- 1. Transmembrane receptor RANK (receptor activator for NF-kB).
- 2. RANK ligand (RANKL) expressed on osteoblast and marrow stromal cells.
- 3. Osteoprotegerin (OPG), a secreted "decoy" receptor made by osteoblast



## Bone Cells and Related Activities

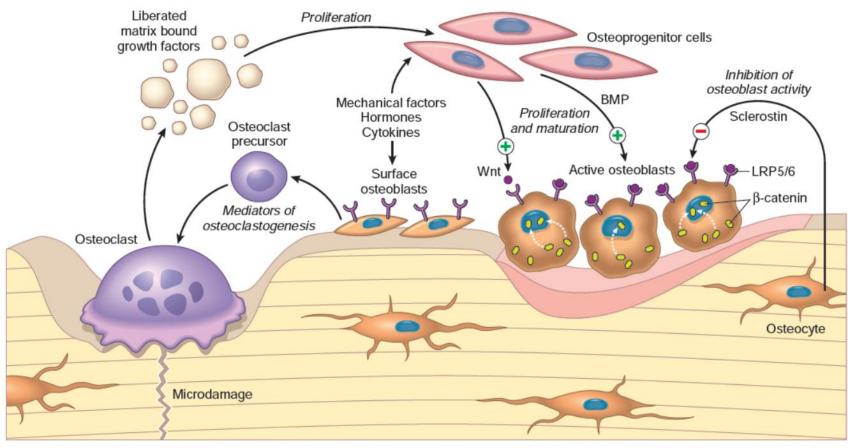



Figure 26-5 Bone cells and their interrelated activities. Hormones, cytokines, growth factors, and signal-transducing molecules are instrumental in their formation and maturation, and allow communication between osteoblasts and osteoclasts. Bone resorption and formation in remodeling are coupled processes that are controlled by systemic factors and local cytokines, some of which are deposited in the bone matrix. BMP, bone morphogenic protein; LRP5/6, LDL receptor related proteins 5 and 6.

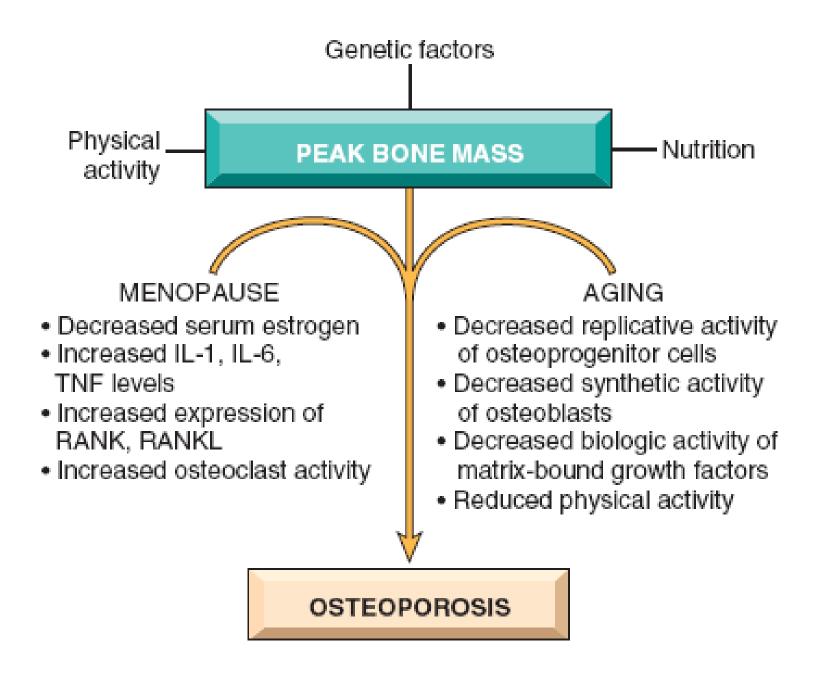
- Parathyroid hormone, IL-1, glucocorticoid promote osteoclast differentiation
- Growth factor (BMP), sex hormones favour OPG expression

## Acquired Disorder

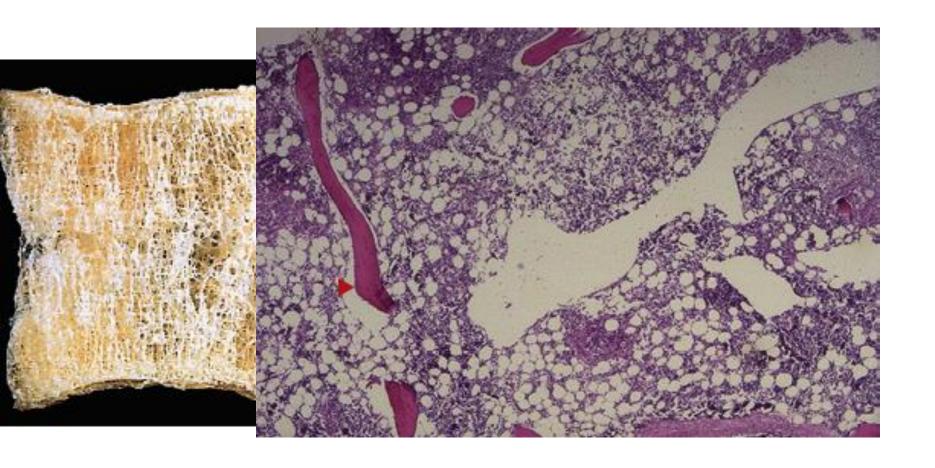
- Osteopenia decreased bone mass
- Osteoporosis → osteopenia + risk #
- Pagets disease
- Rickets Osteomalasia: vit D def/ abnormal metabolism → impairment mineralization
- Hyperparatyhroidism
- Renal Osteodystrophy
- Fracture
- Osteomyelitis

## Osteoporosis

- Bone mass <<</li>
- Fragile fracture
- Primary menopause, senile
- Secondary metabolic disorder
- Peak bone mass → young adulthood
- Bone loss 0,5%/yr inevitable
- Prevention n Treatment: exercise, calcium n vit
   D intake, pharmacologic th/ (bisphosphonate)


Table 26-4 Categories of Generalized Osteoporosis

#### Primary idiopathic Postmenopausal Senile Secondary Endocrine Disorders Addison disease Diabetes, type 1 Hyperparathyroidism Hyperthyroidism Hypothyroidism Pituitary tumors Neoplasia Carcinomatosis Multiple myeloma Gastrointestinal Hepatic Insufficiency Malabsorption Malnutrition Vitamin C, D deficiencies Drugs Alcohol Anticoagulants Anticonvulsants Chemotherapy Corticosteroids Miscellaneous Anemia Homocystinuria **Immobilization** Osteogenesis imperfecta Pulmonary disease


## Osteoporosis

### Pathogenesis:

- Age-related changes
  - Osteoblast reduced proliferative n biosynthetic
- Reduced physical activity
  - Mechanical force stimulate remodelling
  - Astronauts vs athlete
- Genetic factors: LRP5 gene
- Calcium nutritional state
- Hormonal influences: estrogen def



# Osteoporosis



## Fracture #

- Loss of bone integrity mechanical injury or diminished bone strength.
- Simple →
- Compound →
- Comminuted →
- Displaced →
- Stress →
- Greenstick →
- Pathologic →

# Healing #

- Remarkable repair capacity
- Hematoma →
- Soft tissue callus pro callus →
- Bony callus →

# Healing #

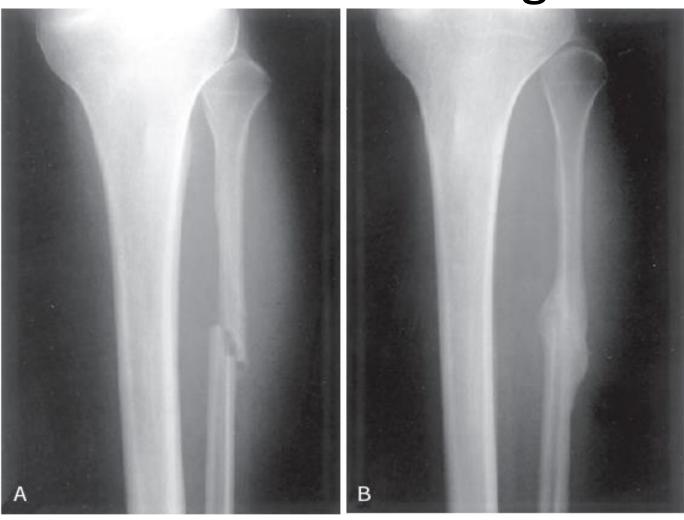
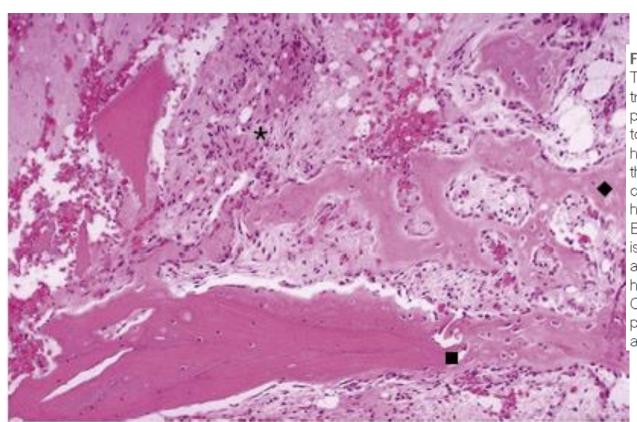




Figure 26-18 A, Recent fracture of the fibula. B, Marked callus formation 6 weeks later. (Courtesy Dr. Barbara Weissman, Brigham and Women's Hospital, Boston, Mass.)

# Healing #



#### Figure 17-7 Fracture callus, microscopic

The region of fracture shows disrupted bony trabeculae (■) at the left and bottom. The paler pink new woven bone (◆) is forming in response to the injury at the right and top in areas of hemorrhage with early granulation tissue (★). In the region of fracture, the new woven bone is called callus. After 6 to 8 weeks, enough healing has occurred to support weight and movement. Eventually, over months to years, this new bone is remodeled into more regular lamellar bone that attains the original shape and strength. Fracture healing is more complete in children than adults. Orthopedic procedures to stabilize fractures and provide proper alignment with plates and screws are often performed.

# Osteomyelitis

- Inflammation: bone and marrow.
- Primary or secondary.
- Virus, parasite, fungi, bacteria (pyogenic, mycobacteria).
- Mechanism: Hematogen, Extension, Direct extension.
- Children: hematogen
- Adults: open #, surgical procedures, diabetic foot

# Osteomyelitis

## Acute phase

- Bacteria proliferate neutrophil
- Bone cells and marrow necrosis → sequestrum
- Periosteum rupture drainase sinus

#### Chronic phase

 Chronic inflammatory cells – cytokines – osteoclastic bone resorption, fibrous tissue, reactive bone – involucrum.

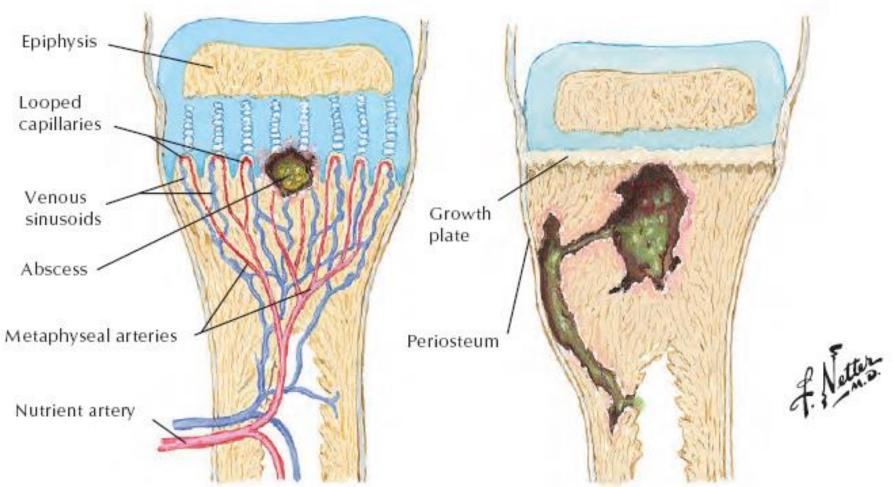
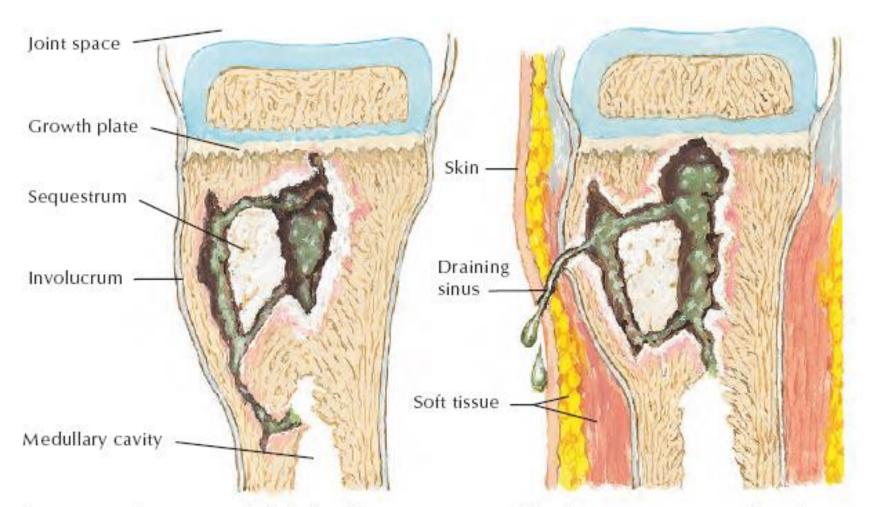



Figure 17-26 Osteomyelitis, microscopic

Shown here in the marrow is fibrosis (♠) accompanied by chronic inflammatory cell infiltrates (▶). The bony trabeculae have become disorganized, and the bone is devitalized (■). Osteomyelitis is difficult to treat and may require surgical drainage and antibiotic therapy. The most common causative organism is Staphylococcus aureus. Neonates may have Haemophilus influenzae and group B streptococcal bone infections. Patients with sickle cell anemia are at risk for Salmonella osteomyelitis. Patients with urinary tract infections and injection drug users are at risk for osteomyelitis with Escherichia coli and Pseudomonas and Klebsiella species.


**Blood culture and bone aspiration** or open biopsy required to establish diagnosis and identify organism for choice of antibiotic therapy

#### **Pathogenesis**



Terminal branches of metaphyseal arteries form loops at growth plate and enter irregular afferent venous sinusoids. Blood flow slowed and turbulent, predisposing to bacterial seeding. In addition, lining cells have little or no phagocytic activity. Area is catch basin for bacteria, and abscess may form.

Abscess, limited by growth plate, spreads transversely along Volkmann canals and elevates periosteum; extends subperiosteally and may invade shaft. In infants under 1 year of age, some metaphyseal arterial branches pass through growth plate, and infection may invade epiphysis and joint.



As abscess spreads, segment of devitalized bone (sequestrum) remains within it. Elevated periosteum may also lay down bone to form encasing shell (involucrum). Occasionally, abscess walled off by fibrosis and bone sclerosis to form Brodie abscess.

Infectious process may erode periosteum and form sinus through soft tissues and skin to drain externally. Process influenced by virulence of organism, resistance of host, administration of antibiotics, and fibrotic and sclerotic responses.

## **Bone Tumor**

Table 26-6 Classification of Major Primary Tumors Involving Bones

| Category and fraction (%) | Behavior  | Tumor type                                                                 | Common locations                                                                                      | Age (yr)                         | Morphology                                                                                                                                                                            |
|---------------------------|-----------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hematopoietic (20)        | Malignant | Myeloma<br>Lymphoma                                                        | Vertebrae, pelvis                                                                                     | 50-60                            | Malignant plasma cells or lymphocytes replacing<br>marrow space                                                                                                                       |
| Cartilage forming (30)    | Benign    | Osteochondroma<br>Chondroma<br>Chondroblastoma<br>Chondromyxoid<br>fibroma | Metaphysis of long bones<br>Small bones of hands and feet<br>Epiphysis of long bones<br>Tibia, pelvis | 10-30<br>30-50<br>10-20<br>20-30 | Bony excrescence with cartilage cap<br>Circumscribed hyaline cartilage nodule in medulla<br>Circumscribed, pericellular calcification<br>Collagenous to myxoid matrix, stellate cells |
|                           | Malignant | Chondrosarcoma<br>(conventional)                                           | Pelvis, shoulder                                                                                      | 40-60                            | Extends from medulla through cortex into soft<br>tissue, chondrocytes with increased cellularity<br>and atypia                                                                        |
| Bone forming (26)         | Benign    | Osteoid osteoma                                                            | Metaphysis of long bones                                                                              | 10-20                            | Cortical, interlacing microtrabeculae of woven bone                                                                                                                                   |
|                           | Malignant | Osteoblastoma<br>Osteosarcoma                                              | Metaphysis of distal femur,<br>proximal tibia                                                         | 10-20                            | Posterior elements of vertebra, histology similar to osteoid osteoma  Extends from medulla to lift periosteum, malignant cells producing woven bone                                   |
| Unknown origin (15)       | Benign    | Giant cell tumor                                                           | Epiphysis of long bones                                                                               | 20-40                            | Destroys medulla and cortex, sheets of osteoclasts                                                                                                                                    |
|                           |           | Aneurysmal bone<br>cyst                                                    | Proximal tibia, distal femur,<br>vertebra                                                             | 10-20                            | Vertebral body, hemorrhagic spaces separated by<br>cellular, fibrous septae                                                                                                           |
|                           | Malignant | Ewing sarcoma                                                              | Diaphysis of long bones                                                                               | 10-20                            | Sheets of primitive small round cells                                                                                                                                                 |
|                           |           | Adamantinoma                                                               | Tibia                                                                                                 | 30-40                            | Cortical, fibrous , bone matrix with epithelial islands                                                                                                                               |
| Notochordal (4)           | Malignant | Chordoma                                                                   | Clivus, sacrum                                                                                        | 30-60                            | Destroys medulla and cortex, foamy cells in myxoid<br>matrix                                                                                                                          |

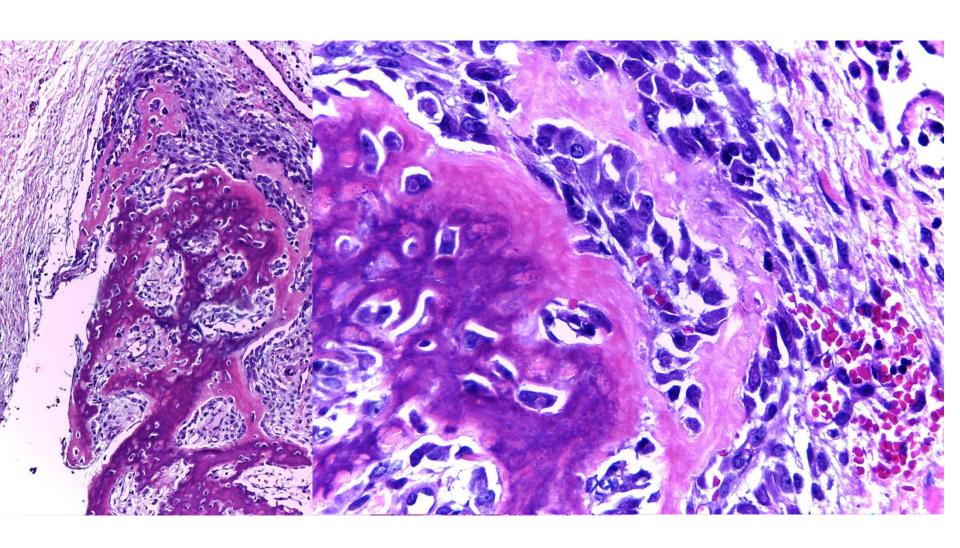
## **Bone Tumor**

- According to the normal cell or matrix produced.
- Mostly benign.
- Bone forming: Osteoblastoma, Osteosarcoma
- Cartilage forming: Osteochondroma, Chondroma, Chondrosarcoma.
- Ewing Sarcoma family tumors: t(11;22).

## Osteosarcoma



#### Figure 17-36 Osteosarcoma, radiograph


This malignancy (▼) involves the metaphyseal region of the distal femur. Long bones are more often affected in young individuals, probably because bone growth with mitotic activity increases risk for genetic mutations. This tumor erodes and destroys the bone cortex, extending into soft tissue where irregular reactive bone formation with calcification is visible as brighter areas in the normally dull-gray soft tissues. The periosteum here is lifted off (▲) to form a Codman triangle.

## Osteosarcoma

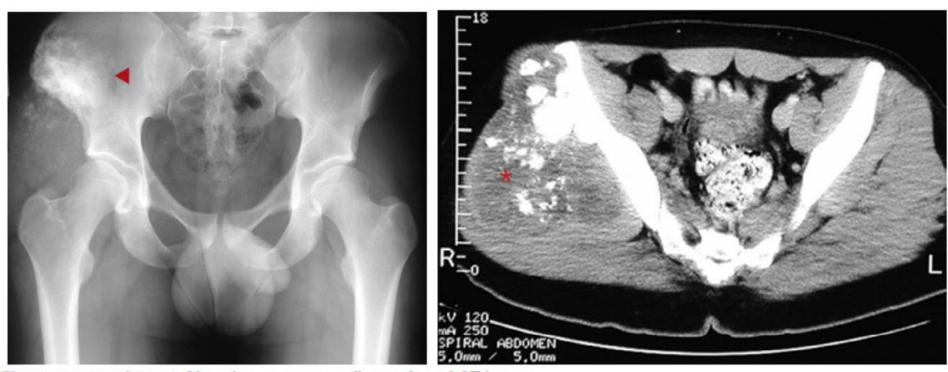



Figure 26-24 Osteosarcoma of the proximal tibia. The tan-white tumor fills most of the medullary cavity of the metaphysis and proximal diaphysis. It has infiltrated through the cortex, lifted the periosteum, and formed soft tissue masses on both sides of the bone.

## Osteosarkoma



## Chondrosarcoma



Figures 17-46 and 17-47 Chondrosarcoma, radiograph and CT image

In the *left panel*, a chondrosarcoma ( $\P$ ) arising in the right iliac wing and extending to soft tissues exhibits irregular brightness. In the *right panel*, the CT scan shows extensive soft-tissue involvement (\*) with brightly calcified areas. These appearances reflect the heterogeneous tissue composition of these tumors. They cause local pain. Metastases from high-grade tumors typically occur in the lungs.

## Chondrosarcoma

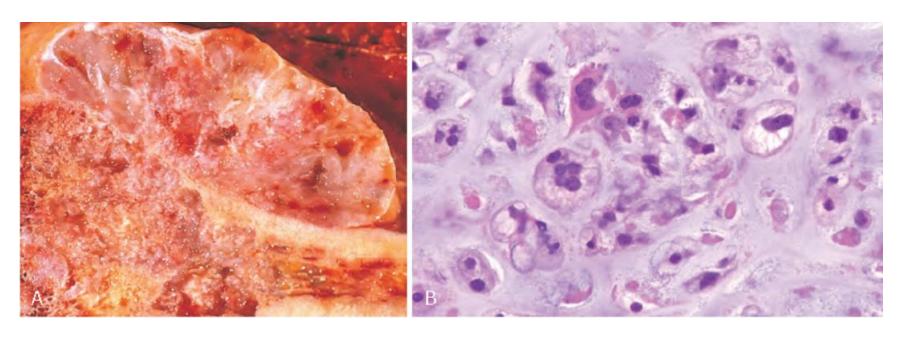
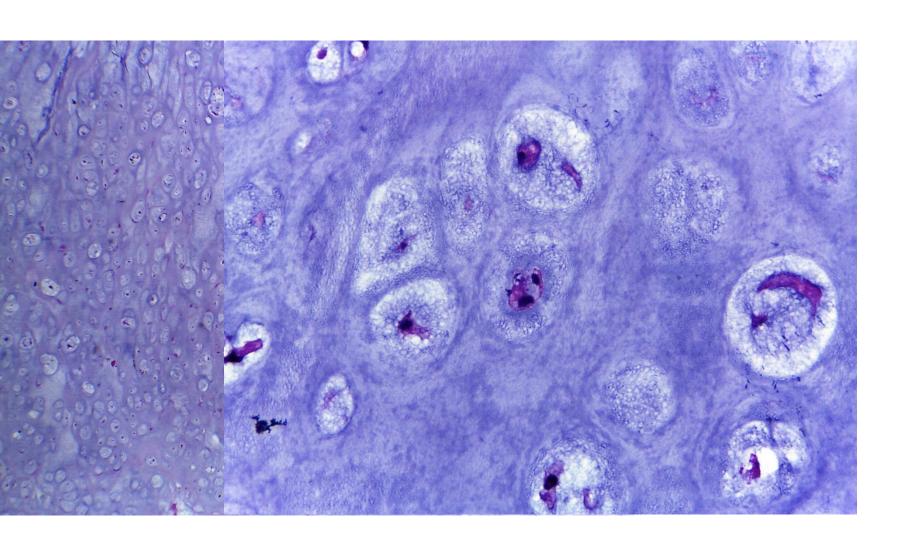
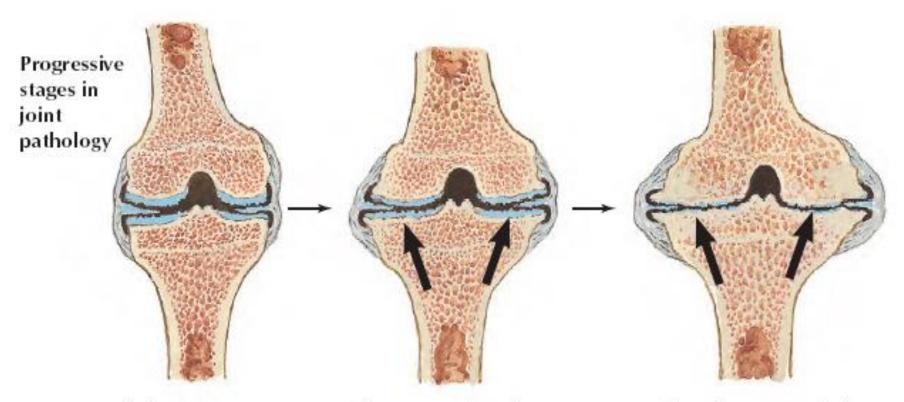




Figure 26-30 Chondrosarcoma. A, Nodules of hyaline and myxoid cartilage permeating throughout the medullary cavity, growing through the cortex, and forming a relatively well-circumscribed soft tissue mass. B, Anaplastic chondrocytes amid hyaline cartilage matrix in a grade 3 chondrosarcoma.

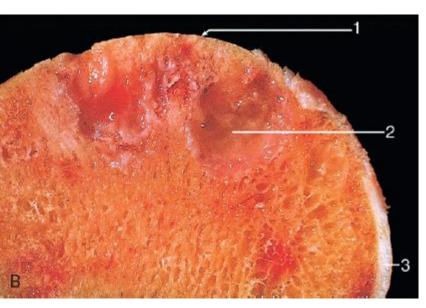
# Chondrosarcoma



### **Joints**


- Solid nonsynovial synarthroses
  - Fibrous synarthroses: cranial sutures
  - Cartilaginous synarthroses: manubrium sternal, pubic
- Cavitated synovial
  - Joint space ROM
  - Synoviocytes:

Type A (macrophage)


Type B (similar to fibroblast, synthesize hyaluronic acid)

- Degenerative joint disease
- Frequent, aging > 65 yrs
- Hands, knees, hips and spines
- Matrix breakdown exceeds synthesis
- Deep, pain exacerbated by use, morning stiffness, crepitus, limitation ROM

- Normal articular cartilago function:
  - Friction-free movement → synovial fluid
  - Weight-bearing joints absorb shock n weight
- Cartilago elastic (proteoglycan + type II collagen → chondrocyte)
- Three phases: (1) Chondrocyte injury, (2) Early
   OA, (3) Late OA



Early degenerative changes with surface fraying of articular cartilages Further erosion of cartilages, pitting, and cleft formation. Hypertrophic changes of bone at joint margins. Cartilages almost completely destroyed and joint space narrowed. Subchondral bone irregular and eburnated; spur formation at margins. Fibrosis of joint capsule.



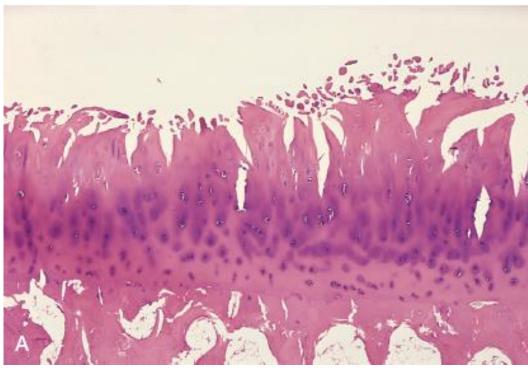
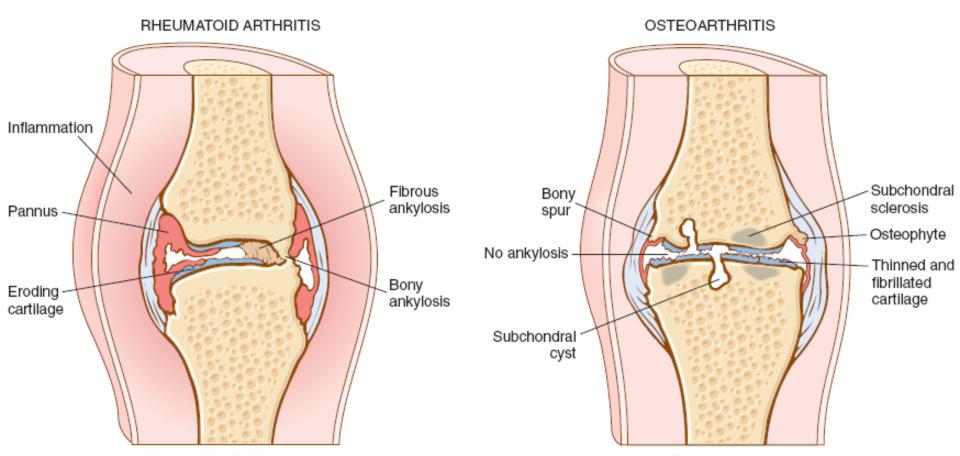
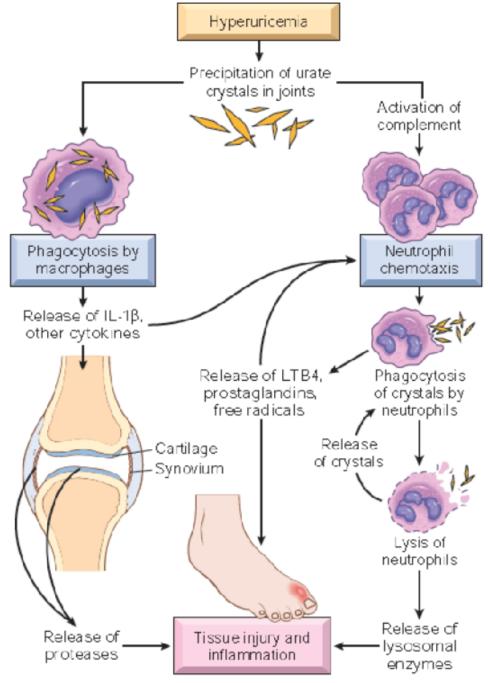



Figure 26-39 Ostecarthritis. A, Histologic demonstration of the characteristic fibrillation of the articular cartilage. B, Eburnated articular surface exposing sub-chondral bone (1), subchondral cyst (2) and residual articular cartilage (3).





Figure 20-17 Comparison of the morphologic features of rheumatoid arthritis (RA) and osteoarthritis.

### **Gout Arthritis**

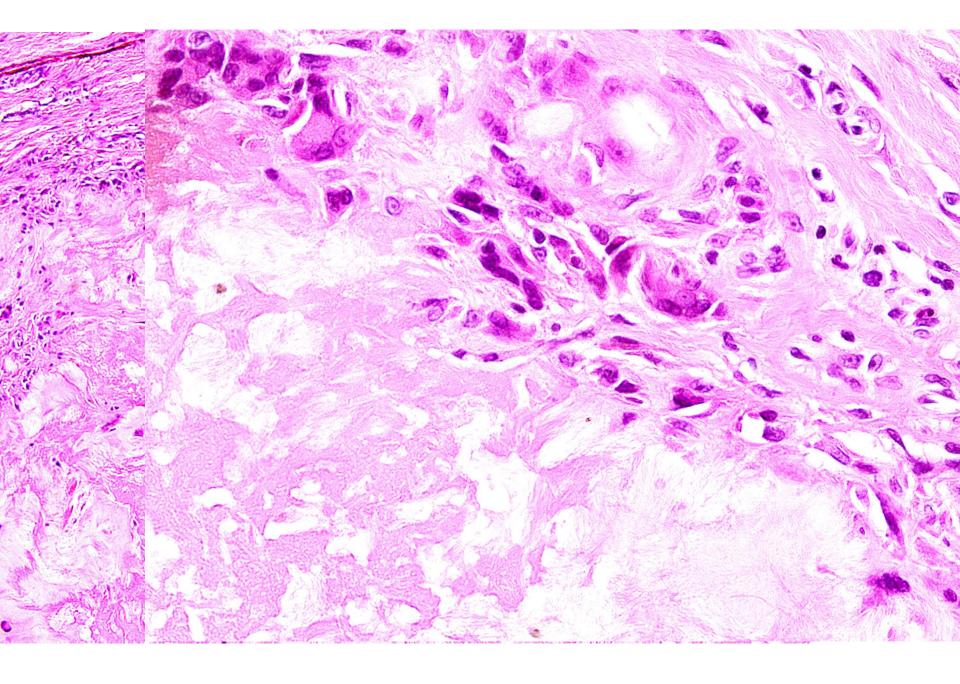

- Transient acute arthritis → crystallization of monosodium urate (MSU) within and around joints
- Primary Gout (90%) or secondary Gout (10%)

Table 26-7 Classification of Gout

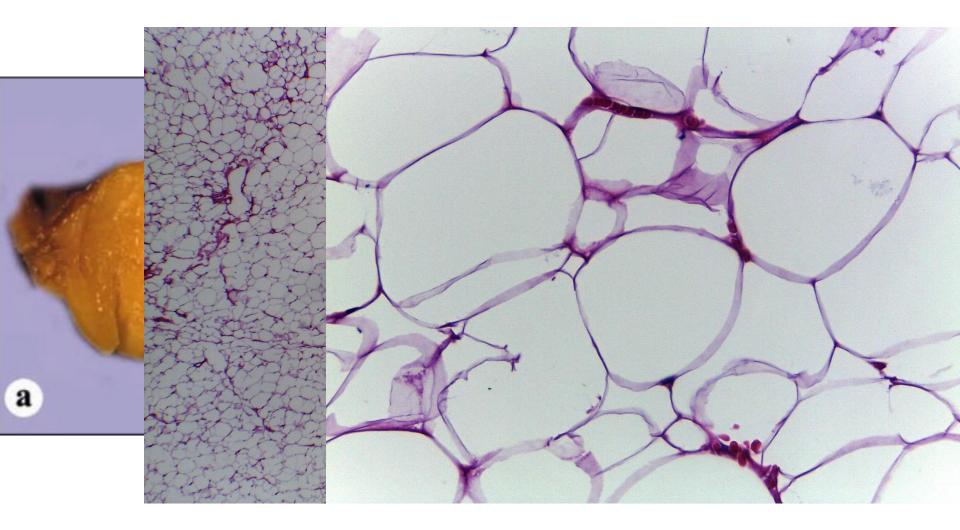
| Clinical Category                                              | Uric Acid Production                    | Uric Acid Excretion |  |  |  |
|----------------------------------------------------------------|-----------------------------------------|---------------------|--|--|--|
| Primary Gout (90%)                                             |                                         |                     |  |  |  |
| Unknown enzyme defects<br>(85%-90%)                            | ↑ (majority)<br>↑↑ (minority)<br>Normal | Normal<br>↑<br>↓    |  |  |  |
| Known enzyme defects<br>(e.g., partial HGPRT<br>deficiency)    | <b>↑</b>                                | Normal              |  |  |  |
| Secondary Gout (10%)                                           |                                         |                     |  |  |  |
| Increased nucleic acid<br>turnover (e.g., leukemia)            | $\uparrow\uparrow$                      | $\uparrow$          |  |  |  |
| Chronic renal disease                                          | Normal                                  | $\downarrow$        |  |  |  |
| Congenital (e.g.,<br>Lesch-Nyhan syndrome<br>HGPRT deficiency) | $\uparrow\uparrow$                      | <b>^</b>            |  |  |  |
| HGPRT, Hypoxanthine guanine phosphoribosyl transferase.        |                                         |                     |  |  |  |



**Figure 26-46** Pathogenesis of acute gouty arthritis. LTB4, Leukotriene B4; IL-1β, interleukin 1β.



### **Soft Tissue**

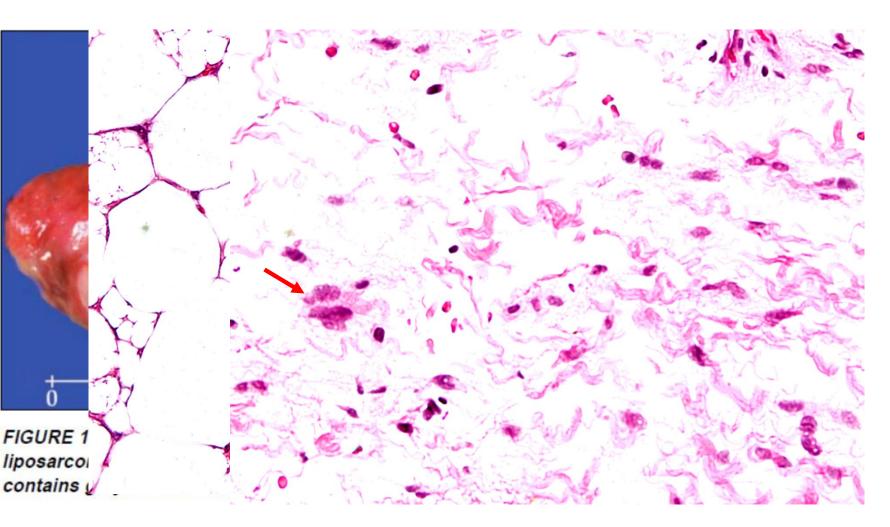

Table 26-9 Soft Tissue Tumors

| Category            | Behavior            | Tumor Type                                                             | Common Locations                                                   | Age (yr)            | Morphology                                                                                                                            |
|---------------------|---------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Adipose             | Benign<br>Malignant | Lipoma<br>Well-differentiated Liposarcoma                              | Superficial extremity, trunk<br>Deep extremity,<br>retroperitoneum | 40-60<br>50-60      | Mature adipose tissue<br>Adipose tissue with scattered atypical spindle<br>cells                                                      |
|                     |                     | Myxold liposarcoma                                                     | Thigh, leg                                                         | 30s                 | Myxold matrix, "chicken wire" vessels, round<br>cells, lipoblasts                                                                     |
| Fibrous             | Benign              | Nodular fasciltis<br>Deep fibromatosis                                 | Arm, forearm<br>Abdominal wali                                     | 20-30<br>30-40      | Tissue culture growth, extravasated erythrocytes,<br>Dense collagen, long, unidirectional fascicles                                   |
| Skeletal muscle     | Benign<br>Malignant | Rhabdomyoma<br>Alveolar rhabdomyosarcoma<br>Embryonal rhabdomyosarcoma | Head and neck Extremities, sinuses Genitourinary tract             | 0-60<br>5-15<br>1-5 | Polygonal rhabdomyoblasts, "spider" cells<br>Uniform round discohesive cells between septae<br>Primitive spindle cells, "strap" cells |
| Smooth muscle       | Benign<br>Malignant | Lelomyoma<br>Lelomyosarcoma                                            | Extremity<br>Thigh, retroperitoneum                                | 20s<br>40-60        | Uniform, plump eosinophilic cells in fascicles<br>Pleomorphic eosinophilic cells                                                      |
| Vascular            | Benign<br>Malignant | Hemangloma<br>Anglosarcoma                                             | Head and neck  Skin, deep lower extremity                          | 0-10<br>50-80       | Circumscribed mass of capillary or venous channels<br>Infiltrating capillary channels                                                 |
| Nerve sheath        | Benign              | Schwannoma<br>Neurofibroma                                             | Head and neck<br>Wide, cutaneous, subcutis                         | 20-50<br>10-20+     | Encapsulated, fibrillar stroma, nuclear palisading<br>Myxoid, ropy collagen, loose fascicles, mast<br>cells                           |
|                     | Malignant           | Malignant peripheral nerve<br>sheath tumor                             | Extremities, shoulder girdle                                       | 20-50               | Tight fascicles, atypia, mitotic activity, necrosis                                                                                   |
| Uncertain histotype | Benign<br>Malignant | Solitary fibrous tumor<br>Synovial sarcoma                             | Pelvis, pleura<br>Thigh, leg                                       | 20-70<br>15-40      | Branching ectatic vessels, Tight fascicles of uniform basophilic spindle cells, Pseudoglandular structures                            |
|                     |                     | Undifferentiated pleomorphic<br>sarcoma                                | Thigh                                                              | 40-70               | High grade anaplastic polygonal, round or<br>spindle cells                                                                            |
|                     |                     | Alveolar soft part sarcoma                                             | Trunk, extremities                                                 | 15-35               | Bizarre nuclei, atypical mitoses, necrosis<br>Multiple nodules of eosinophilic round cells,<br>septae                                 |
|                     |                     | Clear cell sarcoma                                                     | Tendons, extremities                                               | 20-40               | Sheets of pale or clear spindle cells, wreath-like giant cells                                                                        |

### Lipoma

- Benign tumor of fat
- Most common soft tissue tumor of adulthood
- Soft, mobile, painless → simple excision
- Well encapsulated mature adipocytes

# Lipoma




Mature adipocytes,

### Liposarcoma

- Locally aggressive mesenchymal neoplasm
- Variation cell size, nuclear atypia in both adipocyte and stromal cells
- Deep soft tissue of limb (thigh), retroperitoneum, paratesticular area and mediastinum

## Liposarcoma



Lipoblast – Stromal atypia - bizzarre

