Lase, Erwin (2025) Pengaruh Doping Mangan (Mn) Terhadap Struktur Kristal, Morfologi, Dan Komposisi Katoda Lifepo₄ Hasil Sintesis Solid State. S1 thesis, Universitas Kristen Indonesia.
|
Text (Hal_Judul_Abstrak_Daftar_Isi_Daftar_Gambar_Daftar_Tabel_Daftar_Lampiran)
HalJudulAbstrakDaftarIsiDaftarGambarDaftarTabelDaftarLampiran.pdf Available under License Creative Commons Attribution Non-commercial Share Alike. Download (871kB) |
|
|
Text (BAB_I)
BABI.pdf Available under License Creative Commons Attribution Non-commercial Share Alike. Download (536kB) |
|
|
Text (BAB_II)
BABII.pdf Restricted to Registered users only Available under License Creative Commons Attribution Non-commercial Share Alike. Download (878kB) |
|
|
Text (BAB_III)
BABIII.pdf Restricted to Registered users only Available under License Creative Commons Attribution Non-commercial Share Alike. Download (979kB) |
|
|
Text (BAB_IV)
BABIV.pdf Restricted to Registered users only Available under License Creative Commons Attribution Non-commercial Share Alike. Download (915kB) |
|
|
Text (BAB_V)
BABV.pdf Restricted to Registered users only Available under License Creative Commons Attribution Non-commercial Share Alike. Download (606kB) |
|
|
Text (Daftar_Pustaka)
DaftarPustaka.pdf Restricted to Registered users only Available under License Creative Commons Attribution Non-commercial Share Alike. Download (616kB) |
|
|
Text (LAMPIRAN)
Lampiran.pdf Restricted to Repository staff only Available under License Creative Commons Attribution Non-commercial Share Alike. Download (474kB) |
Abstract
Penelitian ini secara komprehensif menganalisis dampak variasi doping mangan (Mn) terhadap karakteristik struktural dan morfologis material katoda LiFePO₄ yang disintesis melalui metode solid-state. Empat sampel dengan variasi konsentrasi doping Mn (0%, 1%, 3%, dan 5%) dikarakterisasi secara mendalam menggunakan teknik X-ray Diffraction (XRD) untuk analisis struktur kristal, Scanning Electron Microscopy (SEM) untuk morfologi permukaan, serta Energy Dispersive X-ray Spectroscopy (EDX) untuk komposisi elemental. Hasil penelitian menunjukkan hubungan kompleks antara konsentrasi doping Mn dengan karakteristik material. Analisis XRD mengungkapkan bahwa doping Mn 1% berhasil mempertahankan struktur olivin LiFePO₄ sebagai fasa dominan dengan kemurnian tinggi. Namun, peningkatan doping hingga 3% dan 5% menyebabkan degradasi struktur kristal yang ditandai dengan munculnya fasa impuritas Fe₂O₃ (hematit) dan Li₃PO₄ secara signifikan, mencapai 56.9% dan 98.9% berturut-turut. Karakterisasi SEM menunjukkan fenomena menarik dimana doping 3% Mn menghasilkan ukuran partikel terkecil (69.7 nm), mengindikasikan efek penghambatan pertumbuhan butir yang optimal pada konsentrasi ini. Namun, analisis EDX tidak mendeteksi keberadaan Mn secara signifikan, yang diduga kuat disebabkan oleh ketidakhomogenan distribusi dopan selama proses ball milling dan pembentukan aglomerat. Temuan utama penelitian ini menggarisbawahi beberapa poin kritis: konsentrasi doping Mn 1% terbukti sebagai titik optimal untuk mempertahankan integritas struktur olivin LiFePO₄, sementara doping ≥3% menyebabkan destabilisasi struktur kristal yang dimediasi melalui mekanisme oksidasi Fe²⁺ menjadi Fe³⁺. Hasil penelitian juga mengungkapkan bahwa efek penghambatan pertumbuhan butir mencapai puncaknya pada doping 3% Mn, ditunjukkan oleh ukuran partikel terkecil (69.7 nm) yang berhasil dihasilkan. Namun demikian, tantangan utama dalam sintesis terletak pada ketidakhomogenan distribusi dopan yang terdeteksi melalui analisis EDX, yang diduga menjadi penyebab utama ketidakteraturan dalam hasil karakterisasi material. Rekomendasi untuk penelitian lanjutan mencakup optimasi proses ball milling, modifikasi atmosfer sintesis, serta pengujian elektrokimia untuk mengevaluasi performa nyata material. Kata kunci: LiFePO₄, Doping mangan, Sintesis solid-state, Material katode, XRD–SEM–EDS / This study comprehensively analyzes the impact of manganese (Mn) doping variation on the structural and morphological characteristics of LiFePO₄ cathode materials synthesized through a solid-state method. Four samples with varying Mn doping concentrations (0%, 1%, 3%, and 5%) were characterized in depth using X-ray Diffraction (XRD) techniques for crystal structure analysis, Scanning Electron Microscopy (SEM) for surface morphology, and Energy Dispersive X-ray Spectroscopy (EDX) for elemental composition. The results show a complex relationship between Mn doping concentration and material characteristics. XRD analysis revealed that 1% Mn doping successfully maintained the olivine structure of LiFePO₄ as the dominant phase with high purity. However, increasing the doping to 3% and 5% caused degradation of the crystal structure characterized by the emergence of significant Fe₂O₃ (hematite) and Li₃PO₄ impurity phases, reaching 56.9% and 98.9%, respectively. SEM characterization showed an interesting phenomenon where 3% Mn doping resulted in the smallest particle size (69.7 nm), indicating an optimal grain growth inhibitory effect at this concentration. However, EDX analysis did not detect significant Mn presence, which is strongly suspected to be due to the inhomogeneity of the dopant distribution during the ball milling process and the formation of agglomerates. The main findings of this study highlight several critical points: a Mn doping concentration of 1% was shown to be the optimal point to maintain the integrity of the olivine LiFePO₄ structure, while doping ≥3% caused destabilization of the crystal structure mediated through the oxidation mechanism of Fe²⁺ to Fe³⁺. The results also revealed that the grain growth inhibitory effect peaked at 3% Mn doping, indicated by the smallest particle size (69.7 nm) successfully produced. However, the main challenge in the synthesis lies in the inhomogeneity of the dopant distribution detected by EDX analysis, which is suspected to be the main cause of the irregularity in the material characterization results. Recommendations for further research include optimization of the ball milling process, modification of the synthesis atmosphere, and electrochemical testing to evaluate the actual performance of the material. Keywords: LiFePO₄, Manganese doping, Solid-state synthesis, Cathode material, XRD–SEM–EDS
| Item Type: | Thesis (S1) | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Contributors: |
|
||||||||||||
| Subjects: | TECHNOLOGY > Mechanical engineering and machinery TECHNOLOGY > Chemical technology TECHNOLOGY > Manufactures |
||||||||||||
| Divisions: | FAKULTAS TEKNIK > Teknik Mesin | ||||||||||||
| Depositing User: | Mr Lase Erwin | ||||||||||||
| Date Deposited: | 07 Nov 2025 09:10 | ||||||||||||
| Last Modified: | 07 Nov 2025 09:10 | ||||||||||||
| URI: | http://repository.uki.ac.id/id/eprint/20982 |
Actions (login required)
![]() |
View Item |
