Presentation, etiology, and outcome of brain infections in an Indonesian hospital by Retno Wahyuningsih **Submission date:** 23-Jul-2020 04:44PM (UTC+0700) **Submission ID: 1361143518** File name: presentation etiology aoutcome Imran et al.pdf (695.61K) Word count: 7021 Character count: 39349 RESEARCH #### 20 # Presentation, etiology, and outcome of brain infections in an Indonesian hospital #### A cohort study Darma Imran, MD, Riwanti Estiasari, MD, PhD, Kartika Maharani, MD, Sucipto, MD, Delly Chipta Lestari, MD, Reyhan Eddy Yunus, MD, MSc, Evy Yunihastuti, MD, PhD, Teguh Haryono Karyadi, MD, Diana Oei, MD, Ina S. Timan, MD, PhD, Dewi Wulandari, MD, MSc, Retno Wahyuningsih, MD, PhD, Robiatul Adawiyah, MD, PhD, Agnes Kurniawan, MD, PhD, Rahmad Mulyadi, MD, Anis Karuniawati, MD, PhD, Ungke Anton Jaya, MBiomed, Dodi Safari Neurology: Clinical Practice October 2018 vol. 8 no. 5 1-10 doi:10.1212/CPJ.00000000000517 #### Correspondence Dr. Imran darma_imran@yahoo.com #### Abstract #### Background Little detailed knowledge is available regarding the etiology and outcome of CNS infection, particularly in HIV-infected individuals, in low-resource settings. #### Methods From January 2015 to April 2016, prospectively included all adults with suspected CNS infection in a referral hospital in Jakarta, Indonesia. Systematic screening included HIV testing, CSF examination, and neuroimaging. #### Results 5 A total of 274 patie 18 with suspected CNS infection (median age 26 years) presented after a median of 14 days with headache (77%), fever (78%), 3 zures (27%), or loss of consciousness (71%). HIV coinfection was common (54%), mostly newly diagnosed (30%) and advanced (median CD4 cell count 30/ μ L). Diagnosis was established in 167 participants (65%), including definite tuberculous meningitis (TBM) (n = 44), probable TBM (n = 48), cerebral toxoplasmosis (n = 48), cryptococcal meningitis (n = 14), herpes si (71 ex virus/varicella-zoster virus/cytomegalovirus encephalitis (n = 10), cerebral lymphoma (n = 1), neurosyphilis (n = 1), and mucormycosis (n = 1). In-hospital mortality was 32%; 6-month mortality was 57%. The remaining survivors had either moderate or severe disability (36%) according to Glasgow Outcome Scale. #### **Conclusion** In this setting, patients with CNS infections present late with severe disease and often associated with advanced HIV infection. Tuberculosis, toxoplasmosis, and cryptococcosis are common. High mortality and long-term morbidity underline the need for service improvements and further study. Departments of Neurology (DI, RE, K 22 cipto, DO, DNL), Microbiology (DCL, A. Karuniawati), Radiology (REY, RM), Internal Medicine (EY, THK), Clinical Pathology (IST, 2), and Parasitology (RW, RA, A. Kurniawan), cipto Mangunki. 5 no Hospital-Faculty of Medicine Universitas Indonesia: Eijkman Institute for Molecular Biology (UAJ, DS, KSAM); Eijkman-Oxford Clinical Research Unit (UAJ), Jakarta, Indonesia; Department of Internal Medicine and Radboud Center Infectious D 29 ses (AV., RvC), Radboud University Medical Center, Nijmegen, the Netherlands; TB/HIV Research Center (BA, SD, LC, ARG), Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia; and Centre for Tropical Medicine and Global Rev.), Nuffield Department of Medicine, University of Oxford, UK. Funding information and disclosures are provided at the end of the article. Full disclosure form information provided by the authors is available with the full text of this article at Neurology.org/cp. CNS infections cause considerable morbidity and mortality, especially in low and middle income countries, where HIV infection remains more prevalent, putting people at higher risk for CNS infections. Establishing a diagnosis may be more challenging in low-resource settings, as lumbar punctures are not always done, access to advanced molecular diagnosis and neuroimaging is often limited, and specific drugs or IV formulations may not be available. These challenges are especially relevant in Indonesia, the fourth most populous country in the world. As Indonesia has the second fastest growing HIV epidemic in Asia,² the burden of CNS infections is also likely to expand. Previous studies have focused on selected infections, especially tuberculous meningitis (TBM),^{3,4} cryptococcal meningitis, and cerebral toxoplasmosis,^{5,6} but the relative distribution and patterns of different pathogens, and their clinical presengion and outcome, remain unknown. We therefore performed a prospective cohort study in the largest referral hospital in Indonesia, to examine the etiology, clinical characteristics, treatment, and outcome of CNS infections in adults, in HIV-infected and uninfected pater The findings will help to improve diagnostic algorithms and clinical management of patients with suspected CNS infections in Indonesia and comparable settings elsewhere. #### Methods #### Setting, patie population, and study design We conducted a prospective cohort study in Cipto Man susumo Hospital, a government university hospital that serves the local community and acts as a tertiary referral hospital for Indonesia. From January 2015 to April 2016, all consecutive patients over 16 years of age with clinically suspected CNS infection (according to clinical judgement of the attending neurologists) were included. Systematic history taking, physical and neurologic examination, CSF and blood examinations, and reading of brain CT and chest X-ray were done. CSF and blood samples were archived for further testing. All patients with a confirmed or presumptive diagnosis of CNS infection were followed prospectively for 6 months. ## Standard protocol approvals, registrations, and patient consents Approval from the ethics committee of the Faculty of Medicine, Universitas Indonesia, has been received for this study (764/UN2.F1/ETIK/2014) and written informed consent for bioarchiving of samples was obtained from all patients (or guardians of patients) participating in the study. #### Clinical and radiologic examination As per routine clinical care, patients with clining lly suspected CNS infections in this hospital usually receive a sign scan of the brain with IV contrast. With patient consent, a large volume (10 mL) of CSF is collected by lumbar puncture, unless there is circulatory shock, severe thrombocytopenia, or brain herniation. Standard CSF measurements comprised microscopic and biochemical analysis, solus microbiological tests selected on a case-by-case basis. Routine blood examination consists of complete blood count and leukocyte differentiation, random blood glucose, sodium, creatinine, and liver enzymes. Neurosurgical interventions (e.g., ventricular drainage) are not routinely available for patients with CNS infections. All patients with suspected CNS infections are routinely tested for HIV, using a provider-initiated testing and counseling approach, in line with national and hospital policies. CD4 cell counts are routinely performed for all HIV-infected persons, and antiretroviral treatment (ART) is 55 ovided free of charge to all symptomatic patients or those with CD4 cell counts below 350 cells/μL in accordance with national guidelines. For this cohort, patient data were captured using an electronic data capture system (REDCap). All patients and their relatives were questioned to assess signs and symptoms, medical history, medication use, possible risk factors, and sociodemographic characteristics. Physical examination included Glasgow Coma Scale and neurologic examination performed by a certified neurologist. CSF was used for first-line microbiological examinations; CSF and serum were archived for second-line diagnostics (as described in detail below). Brain CT scans were performed using a dual-source 128-slice Siemens (Erlangen, Germany) SOMATOM Definition Flash CT scan. The images were scored by a single experienced radiologist for the presence of meningeal enhancement, infarction, hydro-27 halus, abscess, tuberculoma, hemiation, and encephalitis. Meningeal enhancement was de 56 d as enhancement of the pia mater that could extend into the subarachnoid spaces, particularly the cerebral sulci and cistems. Infarction was defined as a hypodense lesion with or votation contrast enhancement within a certain vascular territory. Hydrocephaluseas defined as enlargement of the ventricles particularly with stretching and upward displacement of the corpus callosum, widening of third ventricular recesses, and decreased mammillopontine distance. Abscess was defined as space-occupying lesion with smooth inner and outer margin capsular ring contrast enhancement. Tuberculoma was defined as solitary or multiple isohyperdense lesion with ring enhancement or an area of nodular or irregular 125 homogenous enhancement. Herniation was defined as shifting of cerebral tissue from its normal location into an adjacent space as a result of mass effect. Encephalitis was defined as hypodense lesion with focal brain edema. In addition to the C3scan, chest radiographs were examined and abnormalities were classified as miliary, infiltrative, cavitary, or other signs suggestive of pulmonary tuberculosis. #### Laboratory testing and diagnosis Routine CSF measurements included leukocyte control in the protein, glucose, and microscopic examination using Ziehl-Neelsen (ZN) staining, Gram staining, and India ink. For this soly, specifically for tuberculosis diagnosis, 5–10 mL CSF was centrifuged at 3,000 g for 15 minutes, and 100 μ L sediment was used for ZN staining, 100 μ L for culture (BD MGIT 960 Mycobacteria Culture System), and 200 μ L for nucleic acid amplification test (Xpert MTB/RIF). The supernatant was then stor 32 at -80°C. For individual patients, physicians requested CSF PCR for herpes simplex virus, varicella-zoster virus, culture and microscopy for fungal infections, and cytology for diagnosis of primary CNS lymphoma. Secondary, batch-wise testing was done on archived CSF
and blood samples for those patients for whom no diagnosis was made on primary testing. Batch-wise testing for HIV-negative patients include tests for arboviral infections (using flavivirus reverse transcriptase [RT]–PCR and sequencing, dengue RT-PCR, alphavirus RT-PCR and sequencing, anti-JE immunoglobulin M [IgM] ELISA, anti-dengue IgM ELISA, and virus culture), enteroviral infection using PCR, herpesvirus encephalitis using herpes simplex virus–1 PCR, and NMDA encephalitis using CSF anti-NMDAR antibodies. Meanwhile, batch-wise testing for HIV-infected patients included neurosyphilis assays, cerebral toxoplasmosis, cytomegalovirus encephalitis, and cryptococcal meningitis. Initial diagnoses to guide empiric treatment were made by the treating physician. Final diagnoses were made by consensus using predefined criteria based on primary and secondary analyses (table 1). #### Treatment and follow-up Treatment was at the discretion of treating physicians. Decisions regarding empiric treatment for suspected tuberculosis, bacterial meningitis, cerebral toxoplasmosis, and herpes encephalitis were based on clinical judgement, routine CSF testing, and CT scan, without available | Table 1 | Dradafinad | diagnostic | critoria | |---------|------------|------------|----------| | Table 1 | Predefined | diagnostic | criteria | | Explanation | Reference | |--|---| | Definite: positive CSF microscopy for acid-fast bacilli, <i>Mycobacterium tuberculosis</i> culture, or PCR (Xpert TB) | 22 | | Probable: TBM resea <mark>r 75 a</mark> se definition score ≥10 (without available CT imaging) or ≥12 (with CT), and exclusion of alternative diagnoses | 22 | | Possible: TBM research case definition score of 6–9 points (without available CT imaging) or 6–11 points (with CT), and exclusion of an alternative diagnosis | 22 | | Definite: HIV infection and 1 or more cerebral mass lesions on CT or MRI and a positive CSF <i>Toxoplasma</i> PCR and a documented clinical response to antitoxoplasmosis treatment (i.e., discharged alive), and exclusion of an alternative diagnosis | 23 | | Presumptive: HIV infection and presence of 1 or more cerebral mass lesions on
CT or MRI and a documented clinical response to antitoxoplasmosis treatment
(i.e., discharged alive), and exclusion of an alternative diagnosis | 23 | | Positive CSF India ink examination (budding encapsulated yeasts), or
Cryptococcus neoformans culture, or cryptococcal antigen lateral flow antigen test | 15 | | Positive CSF PCR for HSV, CMV, or VZV a 8 altered mental status plus 2 or more of the following: fever ≥38°C; seizures; new onset of focal neurologic findings; CSF WBC count ≥5/mm³; abnormality of brain parenchyma on neuroimaging suggestive of encephalitis | 24 | | Altered mental status plus 2 or more of the following: fever ≥38°C; seizures; new onset of focal neurologic findings; CSF WBC count ≥5/mm³; abnormality of brain parenchyma on neuroimaging suggestive of encephalitis (with negative CSF virologic examination) | 24 | | Definite: meningitis with detection of bacteria in CSF by microscopy or culture | 25 | | Probable: compatible clinical syndrome, positive bloc 38 liture, plus 1 of the following CSF changes: >5 leukocytes/mm³; glucose <40 mg/dL or CSF/blood glucose ratio <0.5; or protein >100 mg/dL | 26 | | Possible: compatible clinical syndrome, plus one of the following CSF changes: >100 leukocytes/mm³; glucose <40 mg/dL or CSF/blood glucose ratio <0.5; or protein >100 mg/dL plus negative cultures or antigen for bacteria, viral, fungal, or mycobacteria | 26 | | Reactive CSF VDRL and elevated CSF cell count plus exclusion of alternative diagnoses | 27 | | Suspected CNS infection based on combination of compatible dinical signs, CSF findings, and brain CT scan with no other diagnoses | Consensus | | Confirmed alternative diagnosis (e.g., brain tumor) or no suspicion of CNS infection based on clinical signs, CSF findings, and CT scanning | Consensus | | | Definite: positive SF microscopy for acid-fast bacilli, <i>Mycobacterium tuberculosis</i> culture, or PCR (Xpert TB) Probable: TBM resear 75 ase definition score ≥10 (without available CT imaging) or ≥12 (with CT), and exclusion of alternative diagnoses 151 Possible: TBM research case definition score of 6-9 points (without available CT imaging) or 6-11 points (with CT), and exclusion of an alternative diagnosis Definite: HIV infection and 1 or more cerebral mass lesions on CT or MRI and a positive CSF <i>Toxoplasma</i> PCR and a documented clinical response to antitoxoplasmosis treatment (i.e., discharged alive), and exclusion of an alternative diagnosis Presumptive: HIV infection and presence of 1 or more cerebral mass lesions on CT or MRI and a documented clinical response to antitoxoplasmosis treatment (i.e., discharged alive), and exclusion of an alternative diagnosis 202 Positive CSF India ink examination (budding encapsulated yeasts), or Cryptococcus neoformans culture, or cryptococcal antigen lateral flow antigen test Positive CSF PCR for HSV, CMV, or VZV a all altered mental status plus 2 or more of the following fever ≥38°C, seizures; new onset of focal neurologic findings; CSF WBC count ≥5/mm³, abnormality of brain parenchyma on neuroimaging suggestive of encephalitis Altered mental status plus 2 or more of the following: fever ≥38°C; seizures; new onset of focal neurologic findings; CSF WBC count ≥5/mm³, abnormality of brain parenchyma on neuroimaging suggestive of encephalitis (with negative CSF virologic examination) Definite: meningitis with detection of bacteria in CSF by microscopy or culture 37 Probable: compatible clinical syndrome, positive blog 38 liture, plus 1 of the following CSF changes: >5 leukocytes/mm³; glucose <40 mg/dL or CSF/blood glucose ratio <0.5; or protein >100 mg/dL 13 Possible: compatible clinical syndrome, plus one of the following CSF changes: >100 leukocytes/mm³; glucose <40 mg/dL or CSF/blood glucose ratio <0.5; or protein >100 mg/dL 13 Possible: CSF VDRL and ele | Abbreviations: CMV = cytomegalovirus; HSV = herpes simplex virus; TBM = tuberculous meningitis; VDRL= venereal disease research laboratory; VZV = varicella-zoster virus; WBC = white blood cells. microbiological results. Drug regimens and doses were in agreement with prevailing guidelines. As per routine care, supported TBM in this hospital is treated empirically with a combination of rifampicin (600 mg), isoniazid (300 mg), ethambutol (750 mg), and pyrazinamide (1,500 mg). Patients with reduced level of consciousness receive their drugs by nasogastric tube. All TBM patients are given adjunctive deprethasone for 6-8 weeks in a tapering dose. Suspected bacterial meningitis is treated with ceftriaxone IV 2-4 g/d for 10-14 days with administration of IV dexamethasone 20 mg/d for 4 da Clinically suspected herpes encephalitis is treated with IV acyclovir 10 mg/kg/d for [74] 4 days. Suspected cerebral toxoplasmosis is treated with pyrimethamine 50-75 mg and clindamycin 2,400 mg daily for 2–4 vaeks. Confirmed cryptococcal meningitis is treated with IV ar 50 otericin B (0.7-1 mg/kg bodyweight) combined with oral fluconazole at a starting dose of 800 mg/d for 2 weeks; flucytosine is not available in Indonesia. For cytomegal 55 us encephalitis, some patients received IV ganciclovir 5 mg/kg/d every 12 hours for 2 weeks In accordance with natural guidelines, ART in this hospital consists of once daily efavirenz 600 mg, tenofovir 300 mg, and lamivudine 300 mg, and lopinavir/ritonavir plus optimized nucleoside reverse transcriptase inhibitor backbone as second-line therapy. For patients with newly diagnosed HIV infection, ART is generally started 2-8 weeks after
start of treatment of CNS infections (earlier in TBM and toxoplasma encephalitis, later in cryptococcal meningitis). To avoid transfer bias in monitoring survival after hospital discharge, patients were followed 36 ng medical records of routine outpatient clinic visits and phone calls or ho 36 visits for those not attending to scheduled visits. The Glasgow Outcome Rele (GOS) was used to evaluate neurologic outcomes. GOS is a scale for functional outcome that rates patient into one of 5 categories: dead, vegetative state, severe disability, moderate disability, or good recovery. #### Data analysis and statistics Baseline patient characteristics were expressed using proportion (%), median, and interquartile range (IQR). Comparisons between groups were done using χ^2 and parametric or nonparametric tests as appropriate. Kaplan-Meier curves were used to illustrate survival according to HIV status and baseline clinical measures. Continuous measures were Figure 1 Patients presenting with suspected CNS infection CMV = cytomegalovirus: IgG = immunoglobulin G: TB = tuberculosis. divided into 3 groups with cutoffs allowed to deviate slightly from exact tertiles to improve interpretability of results. Univariate and multivariate regression analyses were done to identify clinical, laboratory, or radiologic predictors of 1- and 6-month me 35 ity. Analyses were stratified according to HIV status. All statistical analyses were performed using SPSS 17 for Windows (SPSS Inc., Chicago, IL). Participants with missing data were omitted from the statistical analysis. Participants with loss to follow-up were censored from the analysis. #### 30 Data availability Any data not published within the article will be shared by request from the corresponding author. #### Results #### 9 Clinical presentation During the study period, a total of 10 patients presented with suspected CNS infection. Sixty-six patients were excluded from analysis because of alternative diagnoses (n = 56), like sepsis, brain tumor, stroke, epilepsy, and prima headache, or incomplete data (n = 10; figure 1). Of the 274 patients who were included in further analysis, 249 were admitted via the emergency department (91%), either as self-referrals (61%) or from other hospitals (30%), and 25 (9%) were included as a patients in the medical or pulmonary ward. Patients presented after a median of 14 days (IQR 7–30) of neurologic symptoms, with severe disease manifestations including seizures (27%), motor abnormalities (42%), cranial nerve palsy (39%), and altered mental status (70%). HIV infection was present in 147 (54%) patients, including 83 who were unaware of their HIV status prior to their current hospitalization. Among those with a previously diagnosed HIV infection, 32 (50%) had a history of ART use and 27 patients (42%) were 63 cotrimoxazole *Pneumocystis* pneumonia prophylaxis. The median CD4 cell count was 29/ μ L (range 0–611/ μ L) among patients with previously diagnosed and 30/ μ L (range 3–61/ μ L) among those with newly diagnosed HIV infection. Lumbar punctures were done in 182 patients (67%), more often in HIV-negative (80%) compared to HIV-positive (54%) patients (figure 1). No lumbar puncture was performed in 92 patients, mainly because of a doctor's decision (n = 68), most often because of the presence of mass lesions or brain herniation. Thirteen patients refused lumbar puncture, while for 11 patients no reason could be verified for the fact that no lumbar puncture was done. CSF examination mostly showed mild pleiocytosis, with a predominance of mononuclear cells, elevated protein, and low glucose (table 2). CT scan, performed in 223 patients (81%), showed abnormalities in 181 (81%), with meningeal enhancement and encephalitis as the most common findings. Mass lesions, brain herniation, and encephalitis/cerebritis were more common among HIV-infected patients, while hydrocephalus was more common in HIV-noninfected patients. Based on clinical presentation, CSF, and CT scan findings, 47 (17%) patients presented with a clinical picture resembling encephalitis (with seizures and behavioral changes), and 133 patients (49%) with meningitis (with meningismus | | | 48 | |---------|-----------------------------------|-----------------| | Table 2 | Patient characteristics stratifie | d by HIV status | | | HIV-positive
(n = 147) | HIV-negative
(n = 127) | <i>p</i>
Value | |--|---------------------------|---------------------------|-------------------| | Male sex | 77 | 54 | <0.001 | | Age, y | 32 (29–39) | 32 (25-43) | 0.49 | | New HIV diagnosis | 57 | _ | | | History | | | | | Duration of first neurologic symptoms, d | 14 (7–30) | 10 (3–21) | 0.013 | | History of fever | 78 | 79 | 0.91 | | Headache | 78 | 79 | 0.26 | | Vomiting | 31 | 29 | 0.79 | | Chronic cough | 29 | 24 | 0.35 | | Loss of consciousness | 65 | 77 | 0.023 | | Seizures | 25 | 30 | 0.38 | | Behavioral changes | 23 | 28 | 0.32 | | Physical examination | | | | | Body temp <37.5°C | 28 | 24 | 0.4 | | Glasgow Coma Scale score | 13 (10–15) | 13 (10–14) | 0.15 | | Cranial nerve palsy | 42 | 35 | 0.2 | | Neck stiffness | 44 | 48 | 0.53 | | Motor abnormalities | 51 | 32 | 0.001 | | Papilledema | 34 | 24 | 0.07 | | CSF ^a | | | | | Leukocytes, cells/UL | 18 (6-60) | 36 (10–155) | 0.024 | | Polymorphonuclear cells, % | 20 (10–60) | 20 (10–50) | 0.71 | | Protein, mg/dL | 48 (20–129) | 55 (20–150) | 0.39 | | CSF:blood glucose ratio | 0.49 (0.34-0.62) | 0.5 (0.31-0.72) | 0.59 | | Blood | | | | | 62
Hemoglobin, g/dL | 11.7 (9.7–13.1) | 12.9 (11.4–14.3) | <0.001 | | Leukocytes, 10 ⁹ /L | 9.5 (5.3–9.9) | 13.0 9.4- (18.1) | <0.001 | | Thrombocytes, 10 ⁹ /L | 228 (165–325) | 323 (224–402) | <0.001 | Data are 100% complete for sex, age, and HIV diagnosis; ≥99% complete for history and physical examination; and ≥90% complete for blood examination. Values are % or median (IQR). ^a CSF data were obtained from 80 HIV-infected and 102 HIV-noninfected participants. and typical CSF and CT findings), while for the remainder this distinction could not be made. #### Microbiological examination and disease etiology A definite diagnosis was made in 81 patients (30%), including TBM (n = 44), cerebral toxoplasmosis (n = 10), cryptococcal meningitis (n = 14), neurosyphilis $\binom{61}{n=1}$, mucormycosis (n = 1), cerebral lymphoma (n = 1), and viral encephalitis (n = 10). Definite TBM was diagnosed based on positive Xpert MTB/RIF (n = 34) or ZN microscopy (n = 7) or Mycobacterium tuberculosis con ure (n = 34). Definite viral encephalitis included 2 cases caused by herpes simplex virus, 2 by varicella-zoster virus, and 6 by cytomegalovirus. Figure 2 Relative proportion [3] different diagnoses (including definite diagnoses and probable tuberculous meningitis and toxoplasmosis) according to HIV status (A) HIV positive patients; (B) HIV negative Based on neuroradiology and clinical findings, an additional 94 patients were diagnosed with probable TBM (n = 51), brain abscess (n = 8), or probable cerebral toxoplasmosis (n = 35). Based on routine CSF findings and response to treatment, 2 patients were diagnosed with probable bacterial meningitis. No diagnosis could be made in 53 of 127 HIV-uninfected patients (42%) and 42 of 147 HIV-infected patients (29%) with suspected CNS infection. The relative proportion of different diagnoses (including definite diagnoses and prob-TBM and toxoplasmosis) according to HIV status is shown in figure 2, A and B, and table 3. None of 42 HIVnegative patients with clinically suspected acute encephalitis tested positive for arboviruses or enteroviral infection. Among HIV-uninfected patients with suspected CNS infection, the most common diagnosis was TBM (47%). Among HIVinfected patients, toxoplasmosis was the most common (33%), especially among patients with newly diagnosed HIV, although it was also found in 16 patients with previously diagnosed HIV infection (25%), including 8 patients who had been prescribed cotrimoxazole prophylaxis at some point. Cryptococcal meningitis and viral encephalitis were more common among patients Table 3 Final diagnosis according to HIV status | | HIV-positive
(n = 147) | HIV-negative
(n = 127) | Total
(n = 274) | |-----------------------------------|---------------------------|---------------------------|--------------------| | Tuberculous meningitis | 32 (22) | 60 (47) | 92 (34) | | Definite | 13 | 31 | | | Probable | 19 | 29 | | | Toxoplasma encephalitis | 48 (33) | 0 | 48 (17) | | Definite | 10 | 0 | | | Presumptive | 38 | 0 | | | Cryptococcal meningitis | 13 (9) | 1 (1) | 14 (5) | | Viral encephalitis | 7 (5) | 3 (2) | 10 (4) | | Cytomegalovirus | 6 | 0 | | | Herpes simplex virus | 0 | 2 | | | Varicella-zoster virus | 1 | 1 | | | Others | 5 (3) | 10 (8) | 15 (5) | | Brain abscess | 3 | 5 | | | Possible bacterial meningitis | 0 | 2 | | | Mucormycosis | 0 | 1 | | | Neurosyphilis | 1 | 0 | | | Lymphoma | 1 | 0 | | | NMDAR encephalitis | 0 | 2 | | | CNS infection of unknown etiology | 42 (29) | 53 (42) | 95 (35) | Diagnoses as defined in table 1. Values are n (%). Cryptococcal meningitis and viral encephalitis were more common among patients with known HIV infection than among those with newly diagnosed HIV. with known HIV infection than among those with newly diagnosed HIV. TBM made up one-fourth of diagnoses in both groups of patients with HIV. #### Patient treatment and survival Follow-up was complete during hospitalization, and only 4 cases (3%) were lost during 6 months follow-up. Based on final consensus diagnoses (table 1), patients with TBM (95%) and cryptococcal meningitis (100%) mostly had received appropriate empirical treatment. For patients with a final diagnosis of cerebral toxoplasmosis, 88% had been treated empirically with pyrimethamine-clindamycin. Only 2 of 10 cases with definite viral encephalitis as consensus diagnosis had received empiric antiviral treatment. Patients for
whom no final diagnosis could be made (28% of all HIV-infected and 42% of all HIV-uninfected patients) were mostly treated for presumptive tuberculosis (46%), bacterial meningitis (42%), cerebral toxoplasmosis (13%), or viral encephalitis (12%). Mortality was high: 6 patients (4 HIV-infected and 2 HIVnoninfected) died before any antimicrobial treatment was given. Out of 274 patients, 88 (32%) died during hospitalization, and another 68 (25%) from discharge until 6 months follow-up resulting in a cumulative mortality of 57% at 6 months. Mortality was strongly associated with HIV infection; 37% of those with HIV and 26% of those without HIV infection died during hospital ration, and 67% of those with HIV and 45% without HIV had died after 6 months follow-up (p < 0.01, figure 3). Compared to patients with previously diagnosed HIV infection, those with newly diagnosed HIV had a similar CD4 cell count (median 29/μL vs 30/μL), but a higher mortality (log-rank test 0.03). Besides HIV, other factors predicting mortality included older age, severity of neurologic presentation, CT and chest X-ray abnormalities, and CSF glucose values (table 4). Among 112 patients who could be interviewed at 6 months, 64% had made a good recovery, 25% had moderate disability, and 11% had severe disability according to the GOS. #### Discussion We conducted a prospective cohor 74 udy of patients with suspected CNS infections in a large tertiary referral center in Jakarta, Indonesia. A number of important conclusions could be drawn. First, patients with CNS infections in this setting present late, commonly with loss of consciousness, motor abnormalities, or other severe clinical manifestations. Second, HIV infection was very common, and very advanced, also among those who had previously been diagnosed with HIV. Third, the most common diagnosis overall was TBM, and among HIV-infected patients it was cerebral toxoplasmosis. In spite of an extensive diagnostic workup, a definite diagnosis could only be made in a minority of patients, Finally, one-third of patients died during hospitalization and almost 60% had died at 6 months, with higher mortality among HIV-infected patients and those with neurologic complications. Like in many low-resource settings, late presentation and lack of diagnosis lead to poor outcome of CNS infections in Indonesia. Although this study was conducted in the top referral hospital for Indonesia, two-thirds of patients were self-referred, often after considerable delay, with reduced consciousness and with severe neurologic complications. This suggests that patients or doctors in this setting may not appreciate the significance of certain signs and symptoms, or face barriers to timely access to referral. We are planning further studies, including interviews with health practitioners as well as patients and their family, to help design appropriate interventions to reduce late presentation and diagnosis. In addition, routine diagnostic testing for CNS infections in Indonesia is very limited, especially in general or district hospitals. A recent survey among 288 Indonesian neurologists showed that lumbar puncture is often not performed even if CNS infection is suspected, and that standard microbiological testing for CSF is either not available or not covered by public health insurance (Imran, unpublished data, July 27, 2017). Patients may refuse lumbar puncture, as studied in other settings, 13 or doctors may fear complications of a procedure that is infrequently done. Previous studies in Indonesia have focused on specific CNS infections, like TBM,14 cerebral toxoplasmosis,5 or cryptococcal meningitis, 15 but to our knowledge, only one recent study has examined the etiology of CNS infections, and none has used an extensive and systematic clinical, radiologic, and laboratory workup like ours.6 In the present study, large-volume CSF samples were subjected to a more extensive diagnostic workup, including different diagnostic tests for M tuberculosis and several panels for viruses. Nonetheless, no diagnosis could be made in 35% of cases of suspected CNS infection. Other causes may have to be considered including leptospirosis or rickettsial disease, or possibly noninfectious inflammatory disorders such as immune-mediated encephalitis. 16-20 An epidemiologic study of encephalitis in England showed that 42% of Figure 3 Survival stratified by HIV status Table 4 Predictors of 6-month mortality according to HIV | | HIV-p
(n = 1 | ositive
47) | HIV-negative
(n = 127) | | All patients
(n = 274) | | |--|-----------------|----------------|---------------------------|--------|---------------------------|----------------------| | | HR | р | HR | р | HR | р | | Age, 10-year increase | 1.06 | 0.55 | 0.28 | 0.01 | 0.15 | 0.03 | | Glasgow Coma Scale
score, 1-point increase | 0.86 | <0.01 | <mark>0</mark> .87 | < 0.01 | 0.88 | < 0 .01 | | Body temperature, 1° increase | 1.34 | 0.02 | 1.06 | 0.71 | 1.19 | 0.06 | | Papilledema | 1.45 | 0.10 | 1.70 | 0.05 | 1.41 | 0.04 | | Neck stiffness | 1.73 | <0.01 | 2.12 | <0.01 | 1.82 | <0.01 | | 46
CSF:blood glucose ratio,
0.1 increase | 0.41 | 0.21 | 0.21 | <0.01 | 0.27 | < <mark>0</mark> .01 | | Chest X-ray
abnormality | 1.15 | 0.49 | 2.38 | <0.01 | 1.45 | 0.03 | | CT: brain herniation | 2.69 | <0.01 | 0.52 | 0.37 | 2.04 | <0.01 | | CT: encephalitis/
cerebritis | 1.36 | 0.18 | 1.27 | 0.45 | 1.50 | 0.02 | | Blood neutrophils %,
10% increase | 1.25 | <0.01 | 1.13 | 0.37 | 1.16 | 0.03 | | CD4 cell counts,
increase of 10 cells/µL | 0.94 | <0.01 | NA | NA | NA | NA | 60 Abbreviations: GCS = Glasgow Coma Scale; HR = hazard ratio. HRs were calculated using univariate Cox regression. None of the following predicted mortality: history of seizures or behavioral changes; CSF leucocyte count or protein; infarction, hydrocephalus, abscess, or tuberculoma on CT scan. In multivariate analysis, only papilledema (adjusted HR 1.98, ρ = 0.02) for all patients, herniation on brain CT (adjusted HR 3.64, ρ = 0.03) for HIV-infected patients, and GCS (adjusted HR 0.88, ρ = 0.04) showed a significant association with 6-month mortality. cases were caused by the infectious agents, 21% caused by autoimmune condition, and 37% of unknown condition. ¹⁶ The England study underlines the importance of autoimmune condition as one of the possible causes of encephalitis. However, due to the limitations of the resources, we were only able to perform anti-NMDAR tests in 41 participants, in which we could confirm 2 cases of anti-NMDAR encephalitis. MRI, which is not standard for CNS infections in Indonesia, and novel diagnostic platforms like next-generation sequencing, may help improve diagnosis. However, cohorts of suspected CNS infections from other settings have shown that diagnosis of CNS infections, especially in patients with suspected encephalitis, can be very challenging. ¹⁶ HIV infection proved to be a major factor in our cohort, in terms of both the pology and outcome of CNS infections. Indonesia has the second fastest growing HIV epidemic in Asia. Although the overall HIV prevalence in Indonesia is low at though the overall HIV prevalence in Indonesia is low at the provided provided in the provided pro are barriers to HIV testing in Indonesia; our recent survey among neurologists showed that for many it was not included in their routine workup of patients with suspected CNS infections (Imran, unpublished data). Our data also showed that although HIV infection often had been diagnosed before, many patients had not yet initiated ART. This underlines the challenges in uptake, retention, and monitoring of ART in Indonesia. HIV viral load is not routinely measured and not cover 69 by government health insurance in Indonesia. The very low CD4 cell counts and the frequent occurrence of toxoplasmosis among ARTexperienced patients suggest that many were not adhering to their cotrimoxazole prophylaxis and that many had either stopped taking ART or developed viral resistance. As such, this cohort exemplifies the many challenges in timely diagnosis and adequate treatment of HIV in Indonesia. As a result of the late and severe presentation and the high proportion of advanced HIV coinfection, outcome was poor. One-third of patients died during hospitalization, and another 25% during 6 months follow-up. A range of different interventions may collectively help improve outcome of CNS infections in low-resource settings, including implementation of state-of-the-art rapid diagnostics, algorithms for rational and timely (empiric) treatment, optimized supportive medical care, intensified antimicrobial treatment (as was shown to be effective for TBM in a clinical trial in Indonesia), 3,21 optimal neuroimaging and ventricular drainage and drainage of abscesses if indicated, and possibly the advent of more effective host strategies. However, earlier recognition, diagnosis, and referral of patients with CNS infections, and improved diagnosis and treatment of HIV as a main risk factor, are likely to improve outcomes or prevent the development of CNS infections. As this study was performed in the top referral government hospital, caution should be taken when extrapolating the findings to other hospitals and settings in Indonesia. Nonetheless, this cohort study is the largest and most comprehensive study on CNS infections undertaken in Indonesia, providing important data for epital iology, clinical practice, and further research to improve diagnosis and treatment of CNS infections in Indonesia. #### Author 24ntributions D. Imran: drafting/revising the manuscript, study concept or design, analysis or interpretation of data, study supervision, obtaining funding. R. Estiasari: drafting/revising the manuscript, study concept or design, analysis or interpretation of data, study supervision. K. Maharani: drafting/revising the manuscript, analysis or interpretation
of data, acquisition of data, statistical analysis, study supervision, obtaining funding. Sucipto: drafting/revising the manuscript, analysis or interpretation of data, statistical analysis. D.C. Lestari: drafting/revising the manuscript, acquisition of data. R.E. Yunus: drafting/revising the manuscript, analysis or interpretation of data, acquisition of data. E. Yunihastuti: data acquisiion, acquisition of data. T.H. Karyadi: data acquisition, acquisition of data, obtaining funding. D. Oei: study concept or design, acquisition of data, study supervision. I.S. Timan: study concept or design, contrestion of vital reagents/tools/patients. D. Wulandari: analysis or interpretation of data. R. Wahyuningsih: data acquisition. R. Adawiyah: analysis or interpretation of data, contribution of vital reagents/tools/patients. A. Kurniawan: drafting/ revising the manuscript, analysis or interpretation of data, contribution of vite reagents/tools/patients, study supervision. R. Mulyadi: analysis or interpretation of data, contribution of vital reagents/tools/patients. A. Karuniawati: data acquisition. U.A. Jaya: drafting/revising the manuscript, analysis or in retation of data. D. Safari: drafting/revising the manuscript, study supervision. A. van Laarhoven: drafting/ revising the manuscript. B. Alisjahbana: drafting/revising the manuscript, study supervision. S. Dian: drafting/revisin 23 he manuscript, establishing the database tools. L. Chaidir: study concept or design, study supervision. A.R. Ganiem: drafting/ revising the manuscript, acquisition 👩 data. D.N. Lastri: drafting/revising the manuscript, study supervision, obtaining funding. K.S.A. Myint: drafting revising the manuscript, study supervision. R. van Crevel: drafting/revising the manuscript, study concept or design, analysis or interpretation of data, study supervision, obtaining funding. #### Acknowledgment The authors thank Dr. C. Heriawan Sudjono, PhD, director of tomangunkusumo Hospital; Dr. Ratna Sitompul, PhD, dean of Faculty of Medicine Universitate Indonesia; and Dr. Budi Wiweko, PhD, vice dean of Faculty of Medicine Universitas Indonesia, for their support of the study. #### 17 Study funding No targeted funding reported. #### Disclosure D. Imran received reseat 10 support from Faculty of Medicine Universitas Indonesia. R. Tatiasari, K. Maharani, Sucipto, D.C. Lestari, and R.E. Yunus report no disclosures. E. Yunihastuti serves as Editor-in-Chief of Journal Penyakit Dalam Indonesia and on the editorial board of AIDS Research and Therapy. T.H. Karyadi, D. Oei, I.S. man, D. Wulandari, R. Wahyuningsih, and R. Adawiyah report no disclosures. A. Kurniawa 10 reves as a Section Editor for Medical Journal of Indonesia. R. Mulyadi, A. Karuniawati, U.A. Jaya, D. Safari, and A. van Laarhoven report no disclosures. B. Ali 11 banai is an employee of Pakar Biomedika Indonesia; serves as a consultant for KNCV/USAID; and receives research support from the European Union and USAID. S. Dian, L. Chaidir, A.R. Ganiem, and 188 Lastri report no disclosures. K.S.A. Myint receives research support from the CDC. R. van Crevel reports no disclosures. Full disclosure form information provided by the authors is available with the full text of this article at Neurology.org/cp. Received February 23, 2018. Accepted in final form June 8, 2018. #### References - GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 2017;16:877–897. - Murray CJ, Ortblad KF, Guinovart C, et al. Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384:1005–1070. - Ruslami R, Ganiem AR, Dian S, et al. Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: an open-label, randomised controlled phase 2 trial. Lancet Infect Dis 2013;13:27–35. - Laarhovenvan A, Dian S, Ruesen C, et al. Clinical parameters, routine inflammatory markers, and LTA4H genotype as predictors of mortality among 608 patients with tuberculous meningitis in Indonesia. J Infect Dis 2017;215:1029–1039. - Ganiem AR, Dian S, Indriati A, et al. Cerebral toxoplasmosis mimicking subacute meningitis in HIV-infected patients: a cohort study from Indonesia. PLoS Negl Trop Dis 2013;7:e1994. - Ganiem AR, Parwati I, Wisaksana R, et al. The effect of HIV infection on adult meningitis in Indonesia: a prospective cohort study. AIDS 2009;23:2309–2316. - Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research Electronic Data Capture (REDCap): a metadata driven methodology and worldlow process for providing translational research informatics support. J Biomed Inform 2009;42: 377–381. - Lanciotti RS. Molecular amplification assays for the detection of flaviviruses. Adv Virus Res 2003;61:67–99. - Plante K, Wang E, Partidos CD, et al. Novel chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism. 2011;7:e1002142. - Innis BL, Nisalak A, Nimmannitya S, et al. An enzyme-linked immunosorbent assay to characterize dengue infections where dengue and Japanese encephalitis co-circulate. Am J Trop Med Hyg 1989;40:418–427. - Wiyatno A, Antonjaya U, Ma'roef CN, et al. Detection and identification of coxsackievirus B3 from sera of an Indonesian patient with undifferentiated febrile illness. J Infect Dev Ctries 2016;10:880–883. - van Doornum GJ, Guldemeester J, Osterhaus AD, Niesters HG. Diagnosing herpesvirus infections by real-time amplification and rapid culture. J Clin Microbiol 2003; 41:576–580. - Thakur KT, Mateyo K, Hachaambwa L, et al. Lumbar puncture refusal in sub-Saharan Africa: a call for further understanding and intervention. Neurology 2015;84: 1988–1990. - Chaidir L, Ganiem AR, Vander Zanden A, et al. Comparison of real time IS6110-pcr, microscopy, and culture for diagnosis of tuberculous meningitis in a cohort of adult patients in Indonesia. PLoS One 2012;7:e52001. Beardsley J, Wolbers M, Kibengo FM, et al. Adjunctive dexamethasone in HIV- - Beardsley J, Wolbers M, Kibengo FM, et al. Adjunctive dexamethasone in HIV associated cryptococcal meningitis. N Engl J Med 2016;374:542–554. - Granerod J, Ambrose HE, Davies NW, et al. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis 2010;10:835–844. - Dittrich S, Rattanavong S, Lee SJ, et al. Orientia, rickettsia, and leptospira pathogens as causes of CNS infections in Laos: a prospective study. Lancet Glob Health 2015;3: 104–112 - Zunt JR, Baldwin KJ. Chronic and subacute meningitis. Continuum 2012;18: 1290–1318. - Dalmau J, Graus F. Antibody-mediated encephalitis. N Engl J Med 2018;378: 840–851. - Armangue T, Leypoldt F, Dalmau J. Auto-immune encephalitis as differential diagnosis of infectious encephalitis. Curr Opin Neurol 2014;27:361–368. - Brake Te I, Dian S, Ganiem AR, et al. Pharmacokinetic/pharmacodynamic analysis of an intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis. Int J Antimicrob Agents 2015;45:496–503. - Marais S, Thwaites G, Schoeman JF, et al. Tuberculous meningitis: a uniform case definition for use in clinical research. Lancet Infect Dis 2010;10:803–812. - Portegies P, Solod L, Cinque P, et al. Guidelines for the diagnosis and management of neurological complications of HIV infection. Eur J Neurol 2004;11:297–304. - 24. Venkatesan A, Tunkel AR, Bloch KC, et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium. Clin Infect Dis 2013;57:1114–1128. - Tunkel AR, Hartman BJ, Kaplan SL, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis 2004;39:1267–1284. - Overturf GD. Defining bacterial meningitis and other infections of the central nervous system. Pediatr Crit Care Med 2005;6(3 suppl):S14–S18. Workowski KA, Bolan GA. Sexually transmitted diseases treatment guidelines, 2015. - Workowski KA, Bolan GA. Sexually transmitted diseases treatment guidelines, 2015 MMWR Recomm Rep 2015;64:1–137. ## Neurology Clinical Practice ### Presentation, etiology, and outcome of brain infections in an Indonesian hospital: A cohort study Darma Imran, Riwanti Estiasari, Kartika Maharani, et al. Neurol Clin Pract published online September 13, 2018 DOI 10.1212/CPJ.00000000000517 #### This information is current as of September 13, 2018 **Updated Information &** including high resolution figures, can be found at: Services http://cp.neurology.org/content/early/2018/09/13/CPJ.000000000000005 17.full.html Subspecialty Collections This article, along with others on similar topics, appears in the following collection(s): Encephalitis http://cp.neurology.org//cgi/collection/encephalitis HIV http://cp.neurology.org//cgi/collection/hiv Meningitis http://cp.neurology.org//cgi/collection/meningitis Prognosis http://cp.neurology.org//cgi/collection/prognosis Permissions & Licensing Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at: http://cp.neurology.org/misc/about.xhtml#permissions **Reprints** Information about ordering reprints can be found online: http://cp.neurology.org/misc/addir.xhtml#reprintsus Neurol Clin Pract is an official journal of the American Academy of Neurology. Published continuously since 2011, it is now a bimonthly with 6 issues per year. Copyright © 2018 American Academy of Neurology. All rights reserved. Print ISSN: 2163-0402. Online ISSN: 2163-0933. # Presentation, etiology, and outcome of brain infections in an Indonesian hospital | ORIGIN | IALITY REPORT | | | | | |------------|-------------------------------|---|------------------
-----------------------|---| | 2
SIMIL | | 21% NTERNET SOURCES | 24% PUBLICATIONS | 15%
STUDENT PAPERS | | | PRIMA | RY SOURCES | | | | _ | | 1 | for cognitiv | Pase. "Reade
e brain health i
an evaluation o
actice, 2018 | in aging: A sy | stematic | % | | 2 | Conference | acts of the 22n
e, 23-27 July 20
s", Journal of to
118 | 018, Amsterda | am, the | % | | 3 | spotidoc.co | om | | 2 | % | | 4 | u3adunedir
Internet Source | n.org.nz | | 1 | % | | 5 | academic.c | oup.com | | 1 | % | | 6 | www.ncbi.r | nlm.nih.gov | | 1 | % | | 7 | epdf.tips
Internet Source | 1% | |----|---|-----| | 8 | arupconsult.com
Internet Source | 1% | | 9 | Submitted to University of Liverpool Student Paper | 1% | | 10 | programme.aids2018.org Internet Source | 1% | | 11 | www.semanticscholar.org Internet Source | 1% | | 12 | journals.lww.com
Internet Source | 1% | | 13 | discovery.ucl.ac.uk
Internet Source | 1% | | 14 | epdf.pub
Internet Source | 1% | | 15 | Heidi Lehtola, Antti Palomäki, Pirjo Mustonen, Päivi Hartikainen et al. "Traumatic and spontaneous intracranial hemorrhage in atrial fibrillation patients on warfarin", Neurology: Clinical Practice, 2018 Publication | <1% | | 16 | research.library.mun.ca Internet Source | <1% | | 17 | scholarworks.iupui.edu Internet Source | <1% | |----|--|-----| | 18 | www.in.gov
Internet Source | <1% | | 19 | aidsinfo.nih.gov
Internet Source | <1% | | 20 | scholar.ui.ac.id Internet Source | <1% | | 21 | Watanabe, Toru. "Acute encephalitis and encephalopathy associated with human parvovirus B19 infection in children", World Journal of Clinical Pediatrics, 2015. Publication | <1% | | 22 | Submitted to Bond University Student Paper | <1% | | 23 | revdesportiva.pt Internet Source | <1% | | 24 | www.musicianbrain.com Internet Source | <1% | | 25 | radiopaedia.org Internet Source | <1% | | 26 | www.deepdyve.com Internet Source | <1% | | 27 | in patients with tuberculous meningitis", Journal of Infection, 201206 Publication | <1% | |----|---|-----| | 28 | www.tandfonline.com Internet Source | <1% | | 29 | Sofiati Dian, Ridho Rahmadi, Arjan van
Laarhoven, Ahmad Rizal Ganiem, Reinout van
Crevel. "Predicting Mortality of Tuberculous
Meningitis", Clinical Infectious Diseases, 2018
Publication | <1% | | 30 | Ramani Balu, Lindsey McCracken, Eric
Lancaster, Francesc Graus, Josep Dalmau,
Maarten J. Titulaer. "A score that predicts 1-year
functional status in patients with anti-NMDA
receptor encephalitis", Neurology, 2019
Publication | <1% | | 31 | www.naharnet.com Internet Source | <1% | | 32 | Jeremy Day, Darma Imran, Ahmed Rizal
Ganiem, Natriana Tjahjani et al. "CryptoDex: A
randomised, double-blind, placebo-controlled
phase III trial of adjunctive dexamethasone in
HIV-infected adults with cryptococcal meningitis:
study protocol for a randomised control trial",
Trials, 2014
Publication | <1% | Darma Imran, Sekar Satiti, Paulus Sugianto, | 33 | Riwanti Estiasari et al. "Barriers to diagnosis and management of CNS infections in Indonesia", Neurology, 2019 Publication | <1% | |----|---|-----| | 34 | Submitted to University of Wisconsin, La Crosse Student Paper | <1% | | 35 | journals.plos.org Internet Source | <1% | | 36 | S Dian, V Yunivita, AR Ganiem, T Pramaesya et al. "A double-blinded randomised placebocontrolled phase II trial to evaluate high dose rifampicin for tuberculous meningitis: a dose finding study", Cold Spring Harbor Laboratory, 2018 Publication | <1% | | 37 | "The Central Nervous System in Pediatric
Critical Illness and Injury", Springer Science and
Business Media LLC, 2009
Publication | <1% | | 38 | Kumar, Ramesh, Sunit Singhi, Pratibha Singhi, Muralidharan Jayashree, Arun Bansal, and Anuj Bhatti. "Randomized Controlled Trial Comparing Cerebral Perfusion Pressure—Targeted Therapy Versus Intracranial Pressure—Targeted Therapy for Raised Intracranial Pressure due to Acute CNS Infections in Children:", Critical Care Medicine, 2014. | <1% | | 39 | "Textbook of Neurointensive Care", Springer Nature, 2013 Publication | <1% | |----|---|-----| | 40 | Claire G. Salter, Danique Beijer, Holly Hardy,
Katy E.S. Barwick et al. "Truncating mutations
underlie a spectrum of dominant hereditary
motor neuropathies ", Neurology Genetics, 2018
Publication | <1% | | 41 | nmr.mgh.harvard.edu Internet Source | <1% | | 42 | www.cambridge.org Internet Source | <1% | | 43 | Thi Hoang Mai, N., N. Thi Hoa, T. Vu Thieu Nga, L. Dieu Linh, T. Thi Hong Chau, D. Xuan Sinh, N. Hoan Phu, L. Van Chuong, T. Song Diep, J. Campbell, H. Dang Trung Nghia, T. Ngoc Minh, N. Van Vinh Chau, M. D. de Jong, N. Tran Chinh, T. Tinh Hien, J. Farrar,. "Streptococcus suis Meningitis in Adults in Vietnam", Clinical Infectious Diseases, 2008. Publication | <1% | | 44 | Arjan van Laarhoven, Sofiati Dian, Raúl Aguirre-
Gamboa, Julian Avila-Pacheco et al. "Cerebral | <1% | tryptophan metabolism and outcome of tuberculous meningitis: an observational cohort ## study", The Lancet Infectious Diseases, 2018 Publication | 45 | S J Dickson, S Batson, A J Copas, S G
Edwards, M Singer, R F Miller. "Survival of HIV-
infected patients in the intensive care unit in the
era of highly active antiretroviral therapy",
Thorax, 2007
Publication | <1% | |----|--|-----| | 46 | Nguyen Duc Bang, Maxine Caws, Thai Thanh Truc, Tran Ngoc Duong et al. "Clinical presentations, diagnosis, mortality and prognostic markers of tuberculous meningitis in Vietnamese children: a prospective descriptive study", BMC Infectious Diseases, 2016 Publication | <1% | | 47 | worldwidescience.org Internet Source | <1% | | 48 | infectagentscancer.biomedcentral.com Internet Source | <1% | | 49 | onlinelibrary.wiley.com Internet Source | <1% | | 50 | aidsrestherapy.biomedcentral.com Internet Source | <1% | | 51 | A. Hristea, I. D. Olaru, C. Baicus, R. Moroti, V. Arama, M. Ion. "Clinical prediction rule for differentiating tuberculous from viral meningitis", | <1% | # The International Journal of Tuberculosis and Lung Disease, 2012 Publication | 52 | www.jrheum.org
Internet Source | <1% | |----|---|-----| | 53 | jast.modares.ac.ir
Internet Source | <1% | | 54 | repub.eur.nl Internet Source | <1% | | 55 | icoph.org
Internet Source | <1% | | 56 | Anurag Kumar Singh, Hardeep Singh Malhotra, Ravindra Kumar Garg, Amita Jain et al. "Paradoxical reaction in tuberculous meningitis: presentation, predictors and impact on prognosis", BMC Infectious Diseases, 2016 Publication | <1% | | 57 | Yulia Rosa Saharman, Anis Karuniawati, Rudyanto Sedono, Dita Aditianingsih et al. "Endemic carbapenem-nonsusceptible Acinetobacter baumannii-calcoaceticus complex in intensive care units of the national referral hospital in Jakarta, Indonesia", Antimicrobial Resistance & Infection Control, 2018 Publication | <1% | Ahmad Fuady. "Primary Health Center disaster preparedness after the earthquake in Padang Pariaman, West Sumatra, Indonesia", BMC Research Notes, 2011 <1% Publication thejns.org <1% R. S. Solomons, D. H. Visser, B. J. Marais, J. F. Schoeman, A. M. van Furth. "Diagnostic accuracy of a uniform research case definition for TBM in children: a prospective study", The International Journal of Tuberculosis and Lung Disease, 2016 <1% Publication Juergen Thiele. "Is it justified to perform a bone marrow biopsy examination in sustained erythrocytosis?", Current Hematologic Malignancy Reports, 06/2006 <1% - T abilitation 63 www.ddtjournal.com <1% Nathan Clumeck, Philippe Hermans. "New Therapeutic Approaches in the Acquired Immune Deficiency Syndrome", S. Karger AG, <1% - docplayer.net <1% 65 Internet Source "CONCURRENT SESSIONS: SUBMITTED 66 ABSTRACTS: Concurrent Sessions: Submitted Abstracts", HPB, 10/2011 Publication Christine Kelly, Aman Sohal, Benedict D <1% 67 Michael, Andrew Riordan, Tom Solomon, Rachel Kneen. "Suboptimal management of central nervous system infections in children: a multi-centre retrospective study", BMC Pediatrics, 2012
Publication <1% Wouter I. Schievink, M. Marcel Maya, Stacey 68 Jean-Pierre, Franklin G. Moser, Miriam Nuño, Barry D. Pressman. "Rebound high-pressure headache after treatment of spontaneous intracranial hypotension", Neurology: Clinical Practice, 2019 Publication Submitted to Georgia College & State University 69 Student Paper - A Rizal Ganiem. "The effect of HIV infection on adult meningitis in Indonesia: a prospective cohort study:", AIDS, 11/2009 Exclude quotes On Exclude bibliography On Exclude matches Off