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ABSTRACT 
 

Aims: The aim of the study is to review the mechanism of larvicide bacteria Bacillus thuringiensis 
(Bt) Against mosquito larvae and other insects. 
Discussion: characteristics of mosquito larvae is unique and different from any other stage of 
insect. One of its vulnerabilities is due to its eating habits and this is where Bt toxin play an 
important role as environmental friendly biopesticide. There are several toxin genes of Bt, namely 
crystal (cry) genes, cytolytic (cyt) genes, Vegetative insecticidal protein (vip) genes, Secreted 
insecticidal protein (sip) gene, bin-like and ETX_MTX2-family proteins. These arrays of delta-
endotoxins possess toxic properties and can be used as biopesticides and effective vector control 
aginst tropical disease such as dengue fever. 
Conclusion: Bt toxin is a biological insecticide that acts as a gut toxin to kill insect larvae. Bt is a 
naturally occurring bacterium that produces spores that contain crystalline inclusions with proteins 
that are toxic to insects, especially those which responsible for transmitting vector borne disease. 
Several toxin genes of Bt encode insecticidal proteins that target agricultural and forestry pests 
which is sustainable and environmental friendly. 
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1. INTRODUCTION  
 
Morbidity and mortality due to mosquito borne 
viral infections (Rudolph et al., 2014) such as 
dengue and chikungunya are gigantic. In 2024, 
more than 14 million dengue cases and 10 000+ 
dengue-related deaths were reported globally 
(European Centre for Disease                                   
Prevention and Control, 2025). Most cases were 
reported from the WHO PAHO in the region of 
the tropical (WHO PAHO, 2025). While for 
chikungunya, in 2024 alone, there were 620 000 
cases and 213 deaths were detected through 
epidemic intelligence activities from                             
countries in the Americas (15 published studies 
or reports), Asia (6 studies or reports),                           
Africa (1 study or report) and Europe (1 study or 
report) 
[https://www.ecdc.europa.eu/en/chikungunya-
monthly]. 
 
Nowadays, many infectious diseases were 
primarily controlled through environmental 
interventions, one of the most promising is via 
vector control. In case of dengue and 
chikungunya, vector control is a key measure to 
prevent the spread and transmission of dengue 
and chikungunya  (Siagian, 2023; Wilson et al., 
2020). Vector control aims to proactively prevent 
or at least minimize the number of times a 
vulnerable individual comes into contact with a 
vector that conveys the seed of the disease 
(Siagian, 2023; Chen et al., 2016; Eisen et al., 
2009; Schorderet-Weber et al., 2017). 
Principally, it should incorporate a simultaneous 
act of interventions in the physical environment 
(Buhler et al., 2019) combined with chemical-
insecticide application (Jobe et al., 2023), and 
also biological agent employment (Siagian, 2023; 
Thomas, 2018). All of these type of interventions 
aim to reduce the number of mosquitoes that 
transmit these diseases. Out of those three 
interventions, the biological intervention by 
means of production of microorganisms,                      
mostly pathogenic bacteria, or                                            
predatory species or entomopathogenic fungi 
(Kamel et al., 2024) for use as a biological 
control agent especially against disease causing 
insects (Huang et al., 2017). This approach is 
much easier and costs-effective than the 
production of chemical insecticides (Colmenarez 
et al., 2024) which may result to the insects’ 
resistance (van den Berg et al., 2021) and 
pollution to the environment (Ahmad et al., 
2024).  

The Aedes mosquito is the primary carrier of the 
dengue virus (Schaefer, 2024). The life cycle of 
the Aedes mosquito, a vector for the dengue 
virus, is closely related to its role in transmitting 
disease (Cruz et al., 2023) which relies on its 
vectorial capacity. The life cycle of a mosquito 
has four stages: egg, larva, pupa, and adult. All 
mosquitoes shows to these stages, but different 
species may prefer different habitats. In a more 
specific context, the habitat and favorite breeding 
places of Aedes mosquitoes includes relatively 
clean water in natural or artificial containers 
(Ferede et al., 2024), such as ponds, plants that 
hold water or tree holes, flower pots, bottles, 
cans, non-mounted tires, and clogged gutters 
(Knoblauch et al., 2024); and in conjunction with 
its life cycle, except for the adult, all remaining 
three stages are inhabitant of aquatic milieu 
(Arévalo-Cortés et al., 2022) as temporary 
breeder (Glogoza et al., 2000). The good 
understanding of its life cycle become the pivotal 
entry point for preventing transmission. 
 
Mosquito larvae, also known as "wigglers", 
actually are the most vulnerable stage of a 
mosquito's life cycle; they are prone to their 
natural predators, oils (because when applied to 
the water surface, oil creates a barrier that 
prevents them from accessing oxygen, which 
they need to breathe through a specialized tube 
called a siphon; essentially, they suffocate due to 
their inability to break through the oil film to reach 
the air at the water surface) and  also to certain 
bacteria. In other words, they are susceptible to 
biological and chemical larvicides and making 
them the target of larvicides is quite easy 
theoretically. Its life cycle continuation can be 
stop by killing mosquito larvae and pupae before 
they can grow into adult mosquitoes. The aim of 
the study is to revisited the mechanism of 
larvicide bacteria Bt against mosquito larvae and 
other insects. 
 

2. CHARACTERISTICS OF MOSQUITO 
LARVAE 

 
The life cycle of a typical mosquito actually has 
four stages, namely egg, larvae, pupae, and 
adult (Hawkes & Hopkins, 2022). All types of 
mosquitoes undergo these stages, but habitats 
preference varied between species. Mosquito 
larva (plural- larvae), called “wrigglers,” are 
aquatic creatures, can be described as follows: 
they have three body regions: head, thorax, and 
abdomen. The head of mosquito larvae is large 
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and sclerotized (composed of a hardened 
exoskeleton). Thoracic segments that are 
strongly dilated compared to the wormlike 
abdominal ones with apods (no legs), as with all 
diptera (Martins et al., 2023, Hu, ey al., 2020). 
 
Typically, they hang just right below the water 
surface for respiration (Lee et al., 2017), 
breathing air through some kind of tubes, a 
snorkel-like breathing siphon at the distal tip of 
their abdomen to establish breathe. Larva live 
entirely in the water and come to the surface to 
breathe. Larva shed (molt) their skin four times, 
growing larger after each molt. The periods 
between molting are called instars. The larval 
stage lasts between 4 and 14 days. The length of 
the larval stage depends on the species, water 
temperature, and food availability (Martins et al., 
2023; Lee et al., 2017). This is the most 
vulnerable stage of the mosquito lifecycle to 
mosquito control efforts because it is easy to find 
and destroy in standing water. 
 
One of its vulnerability is its eating habits. 
Mosquito larvae eat almost constantly until they 
exit the larval stage- harvest their nutrition by 
dining on their organic surrounding detritus which 
can consist of algae, bacteria, protozoa, and 
other microorganisms that are found in water. It 
also eats plant debris, insect exuviate and 
crustaceans. Mosquito larvae filter feed on 
microorganisms near the water's surface. 
Mosquito larvae scrape biofilms from rocks and 
underwater vegetation (Hawkes & Hopkins, 
2022). This is when larvicide bacteria come into 
its potency. 
 

3. Bacillus thuringiensis: ITS MICRO-
BIOLOGY AND EFFECTS 

 
Bacillus thuringiensis (Bt) is a ubiquitous Gram-
positive, spore-forming bacterium (Sun et al., 
2021; sanahuja et al., 2011)) that forms a unique 
parasporal crystal the time of their stationary 
phase in its growth cycle (Unzue et al., 2022). 
Their existence in the nature seems to be 
indigenous to various types of environments, 
worldwide (Arrieta & Espinoza, 2006; Damgaard, 
2000; Assaeedi et al., 2011) even considered as 
environmental pathogens with its unique host 
specificity which has developed as part of its 
adaptation to human generated ecological niches 
(Argôlo-Filho & Loguercio, 2013). Isolation 
typically involves heat treatment to select for 
spores (Wen et al., 2022), sometimes with an 
acetate enrichment step (Rivero & Cerdá-
Olmedo, 1987) or alternatively using antibiotic 

selection (Ahmed et al., 2024). The diversity in 
flagellar (H-antigen) agglutination reactions (Xu & 
Côté, 2008) is one indication of the 
immeasurable genetic diversity among Bt 
isolates. 
 
The astonishing diversity of Bt strains and toxins 
is due at least in part to a high degree of genetic 
plasticity and mobile genetic elements (Gillis et 
al., 2018). Most Bt toxin genes appear to be 
settled in plasmids (Guerrero et al., 2024), on 
numerous occasion as parts of composite 
structures that include mobile genetic elements 
(Hu et al., 2022). Great quantities of Cry gene-
containing plasmids appear to be conjugative 
plasmid (Hu et al., 2022; Guerrero et al., 2024; 
Gillis et al., 2018). 
 
This Bt was initially marked as an insect 
pathogen (Ruiu, 2015), and its insecticidal 
activity was ascribed mostly or completely 
(depending on the species of insect) to the 
parasporal crystals (Unzue et al., 2022). Bt has 
developed an enchanting array of molecular 
mechanisms to manufacture colossal amounts of 
biopesticidal toxins (Kumar et al., 2021; 
Crickmore et al., 2020) during the stationary 
phase of growth (Palma et al., 2014;). The toxin 
genes of Bt are crystal (Cry) genes (Crickmore et 
al., 2020; Peng et al., 2019), cytolytic (Cyt) genes 
(Guerchicoff et al., 2021; Crickmore et al., 2020) 
Vegetative insecticidal protein (Vip) genes 
(Gupta et al., 2021; Crickmore et al., 2020), 
Secreted insecticidal protein (Sip) gene (Shen et 
al., 2021; Crickmore et al., 2020) Bin-like and 
ETX_MTX2-family proteins (Crickmore et al., 
2020; Palma et al., 2014). These genes encode 
insecticidal proteins that target agricultural and 
forestry pests which is sustainable and 
environmental friendly (Ragasruthi et al., 2024; 
Gupta et al., 2021; Chattopadhyay & Banerjee, 
2018). Its ecological values are enormous, in 
addition of being an environmentally-friendly 
biopesticide (Ragasruthi et al., 2024; Gupta et 
al., 2021; Chattopadhyay & Banerjee, 2018) and 
a potential candidate of safe bio fertilizer (Gomis-
Cebolla & Berry, 2023), It can also help 
biodegrade pollutants (organic or inorganic) in 
the environment (Wu et al., 2023). 
 

4. ITS TOXINS AND THEIR BIOCIDAL 
ACTIVITY 

 
Bt toxins are proteins produced by the bacterium 
that are toxic to insects, nematodes, and some 
human cancer cells. These toxins are used as 
biopesticides to control insect pests. 
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Crystal (Cry and Cyt) proteins. Cry and Cyt 
protein are different, but share the same action, 
because these two widely known as pore-forming 
toxins which work in the stomach of an insect 
(Soberón et al., 2010). These proteins produced 
during sporulation (Xu et al., 2014) and are the 
most common type of Bt toxin (Palma et al, 
2014). The individual Cry and Cyt proteins 
actually show weak toxicity to mosquito larvae, 
compared to the high toxic effect displayed by 
the whole combined crystal, which results from 
the synergism among these proteins (Silva-Filha 
et al., 2021). These two work together to kill 
mosquito larvae by forming pores in the midgut 
cells of the larvae (Silva-Filha et al., 2021; 
Cancino-Rodezno et al., 2012). Its mechanism of 
action is as follow: Mosquito larvae ingest the 
Cry and Cyt toxins, which are contained in crystal 
inclusions. The alkaline pH of the midgut 
dissolves the crystals (Koller et al., 1992).  
Midgut proteases activate the protoxins where 
the structural changes that trigger receptor 
binding upon proteolytic activation of these 
insecticidal protein (Infante et al., 2024). The Cry 
and Cyt toxins bind to receptors and insert into 
the midgut cell membrane (Bravo et al., 2007). 
The toxins form pores (Soberón et al., 2010) that 
disrupt the cell's ion homeostasis and kill the cell. 
The combination of cry and cyt genes allows for 
high toxic activity, causing immediate larval 
death within or less than 24 hours after initial 
exposure (Soares-da-Silva et al., 2017). The 
ingestion of the crystals is important for the mode 
of action since it was observed that larvae 
treated with soluble toxins did not display 
mortality (Lopez-Molina et al., 2021) and this is 
perfectly facilitated by the voracious nature of the 
larval stage of the mosquito (Hawkes & Hopkins, 
2022). 
 
Vegetative insecticidal proteins (Vips). These 
proteins are secreted during vegetative growth 
and are toxic to lepidopteran, coleopteran, and 
some hemipteran pests (Gupta et al., 2021; 
Palma et al., 2014). The mechanism of action of 
Vip toxins involves binding to receptors in the 
midgut of an insect, forming pores, and killing the 
insect (Infante et al., 2024). Vip1 and Vip2 are 
binary toxins which are specific to coleopterans 
and hemipterans (Gupta et al., 2021; Geng et al., 
2019). Vip1 binds to receptors in the midgut 
membrane while Vip2 enters the cell through 
endocytosis and acts against actin in its target 
cells- precisely by by preventing the formation of 
microfilaments through ADP-ribose catalytic 
transfer from NAD to actin and disintegration of 
insect’s cytoskeleton, resulting in the death of 

target insect (Sellami et al., 2016). On the other 
hand, Vip3 toxins are activated by proteolysis in 
the insect midgut (Nimsanor et al, 2020). The 
activated toxins bind to receptors, forming pores 
in the midgut cells. The mechanism of action of 
Vip3 toxins is similar to the Cry toxin-like 
protease activation (Byrne et al., 2020) where 
toxicity is likely to result from pore formation 
leading to cell necrosis, however, other 
mechanisms of toxicity have been suggested 
including the initiation of cell apoptosis via 
mitochondrial dysfunction and with lysosome 
play an important role in the action of this toxin 
(Hou et al., 2020). 
 

Secreted insecticidal protein (Sip). This 
protein has insecticidal activity against 
coleopteran pests (Shen et al., 2021; Crickmore 
et al., 2020). Structural insight into Bt Sip1Ab 
reveals its similarity to ETX_MTX2 family beta-
pore-forming toxin (Chen et al., 2023). It likely 
functions by binding to receptors in the midgut of 
insects and disrupting the membrane. This 
disrupts the function of the midgut and allows gut 
contents to leak out, which kills the insect. 
 

Bin-like and ETX_MTX2-family proteins. 
These proteins are produced by some Bt strains 
and share amino acid similarities with 
mosquitocidal binary (Bin) and Mtx2 toxins. 
Binary (BinAB) toxin is primarily responsible for 
the larvicidal effect of the bacterium. BinAB is a 
single-receptor-specific toxin which act like a 
stomach poison and is effective against larvae of 
Culex and Anopheles, but not against Aedes 
aegypti. (Sharma & Kumar, 2021; Smith et al., 
2004). 
 

One may only conjuncture regarding the 
ecological contribution to the bacterium of 
implicating several Cry gene expression 
systems, which strongly suggest the broader 
spectrum of insecticidal activity during its active 
portion (Arsov et al., 2023). Unfortunately, co-
expression of multiple toxins is distinctly possible 
to elevate the host range of a given strain 
(Malovichko et al., 2019) or of a population 
exchanging toxin genes (Gonzalez et al., 2019); 
it was suggested there was plasmid transfer 
between different Bt strains during growth within 
an insect which was a non-susceptible larvae 
(Thomas et al.,2001). Any critical experiments 
directed towards understanding bacterial toxin 
gene expression within the gut of a susceptible 
pest must be encourage to make a better 
understanding regarding its biopesticidical 
properties, especially in mechanism of action and 
also interaction with its insect host. 
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5. CONCLUSION 
 
Bt toxin is a biological insecticide that acts as a 
gut toxin to kill insect larvae. Bt is a naturally 
occurring bacterium that produces spores that 
contain crystalline inclusions with proteins that 
are toxic to insects, especially those which 
responsible for transmitting vector borne disease. 
There are several toxin genes of Bacillus 
thuringiensis, namely (Bt) are crystal (Cry) 
genes, cytolytic (Cyt) genes, Vegetative 
insecticidal protein (Vip) genes, Secreted 
insecticidal protein (Sip) gene, Bin-like and 
ETX_MTX2-family proteins. These genes encode 
insecticidal proteins that target agricultural and 
forestry pests which is sustainable and 
environmental friendly.  
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