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Abstract: Finding the optimal location and power capacity of traction substations is a problem in the 
design of DC electric power supply systems for trains. The proposed method uses evolutionary 
multi-objective optimization (EMO) to find the solution. By using two optimization steps: firstly, 
finding the Pareto optimal solutions with NSGA-ii method, and secondly, selecting from the Pareto 
optimal solutions by using higher-level information to obtain the best solution. The method is used 
to optimize 15 kilometer (km) railway power supply systems with three or four traction 
substations. The load sharing between the traction substations is almost the same as the minimum 
power capacity. Therefore, the single best solution is obtained, showing that the minimum solution 
requirements for the location and power capacity of the traction substations are met. 
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1. Introduction 
 Many large cities worldwide have used and are building rail-based electric mass transportation 
due to the efficiency of energy consumption per passenger and pollution cleanliness compared to bus 
or tram-based mass transportation [1] [2]. The electrical power supply system for mass rapid transit 
(MRT) trains is designed to meet the requirements of sustainable development, be 
environmentally friendly, and be energy efficient [3]. Research on energy savings and efficient 
use of the train’s electrical power supply system has been conducted for a long time. [4] proposed 
several important formulas for energy conservation in train DC power supply systems to achieve 
an economically distributed system, including determining the ideal distance between traction 
substations affected by the maximum voltage drop and setting the allowable overload current of the 
track feeder circuit breaker (in the worst case, a short circuit should always be sufficient to trip the 
circuit breaker). [5] If the number of passenger stations per traction substation and the traffic 
density are low, then for the lowest capacity requirement, the traction substation should be located 
midway between adjacent stations. [6] The assumptions for calculating the distance between 
substations are that the electric current used by all trains is the same and that the distance between 
trains is the same [7]. 
 The use of optimization methods in the calculation of train DC power supply systems seems to 
have started in 2008 [8]. The selection of the numbers, the capacity and the distance between 
traction substations to minimizing the power losses of the railway power supply system. Then the 
optimization using the genetic algorithm method was carried out [9]. A method for optimizing the 
location of rectifier substations based on multi-objective optimization with weighting factors, 
resulting in a single objective function or single objective genetic optimization that is able to 
calculate energy requirements and peak power demand to be optimized. Whereby, the application 
of the method was in Line 4 of Metro Sao Paolo Brazil. Then the work of [10], a single objective 
Genetic algorithm meta-heuristic optimization method [11] with peak demand objective function 
and fitness function is the DC power flow model. The optimization method developed is sufficient 
for simplified cases of DC power system design, so the convex optimization problem applies. In this 
paper, the use of the Evolutionary Multi-Objective Optimization (EMO) optimization method is 
developed for optimization cases where the convex condition no longer applies. Then the proposed 
methods are used to study the railway power supply system for the Jakarta MRT. 
The sequencing of this paper is as follows: the Problem is divided into three parts: the mechanical 
characteristics of the train, the power flow of the train system, and the multi-objective function 
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problem. After that, the evolutionary multi-objective optimization method is applied to find the 
optimal position and nominal power of direct current traction substations. Then, the results with 
the EMO method are discussed and compared with the single objective genetic algorithm 
method. Finally, the paper concludes. 
 
2. Problem 
A. MRT Train Movement and Energy Consumption Model 
 The mechanical power of the train is the power used by the train to move or to create a drag force 
on the train [12]. An important component in this modelling is the weight of the train; this affects 
the drag force on the train, which determines the movement of the train [13] [14]. Based on 
Newton’s second equation, the drag force is directly proportional to the mass of the train and the 
acceleration of the train [15]. The four drag forces, for acceleration, inclined plane, friction and 
wind resistance, and bending resistance [16], are summed to give the total drag force, which is the 
total drag force needed to produce motion in the train. 
 The total tractive force required to move the train is generated by the motors on the train. The 
motor’s torque through the motor pinion drives the gears on the drive wheel shaft of the car. The 
relationship between motor torque and tractive effort can be explained by the fact that the Power 
output to the train wheels is equal to the efficiency of the Power input to the motor pinion. The 
pulling force of the train is the motor efficiency constant times the motor torque and gamma 
divided by the train radius and gravity constant, where Gamma is the ratio of pinion speed to 
wheel speed and the radius of the train wheel in meters, and the motor efficiency constant is the 
efficiency of the transmission from the motor to the train wheel drive shaft [17]. So, the 
mechanical Power of a train can be obtained [18] 

𝑃𝑃 =
1000
3600

𝐹𝐹𝑡𝑡𝑣𝑣
𝜂𝜂 [𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤] (1) 

where Ft is the total pulling force kgf, v is the train speed km/h, η is the motor efficiency. In this 
way, the required energy is derived by finding the average power of the motor multiplied by time. The 
movement of the train is determined by the pulling force and weight of the train interacting between 
the wheels and the rail road tracks through a certain area of contact. This phenomenon is called 
adhesion and has three states: slip, perfect rolling, and skidding. 
 The speed curve as a function of time so that the relationship between the electrical power 
required and the time or position of the train can be obtained. The speed curve as a function of 
time is approximated as a quadrilateral, where the acceleration time, the deceleration time, and 
the deceleration time are given, as well as the angle at the start point of acceleration and the angle 
at the end point of deceleration. By analyzing the speed curve against time, the speed after the 
acceleration action and the speed at the deceleration action are obtained, of course, if the accel- 
eration time and the glide time and the deceleration time and vice versa are known. This is used in 
the movement of trains from one passenger station to another in the simulation. On a route, the 
average speed and the planned speed are required. The average speed calculation is the distance 
travelled divided by the time taken. The calculation for the planned speed is the journey time plus the 
stopping time at the passenger station. 
 
B. Power Flow Model of the DC Electrical Power Supply System 
 Electric trains are constantly moving along the tracks, so their position and load always vary 
with time [19]. This makes it difficult to model the load flow in the direct case, where the load varies 
with time and position. Using the principle [20] that changes in load characteristics in a power flow 
model do not occur in a short time, so that there are no electrical transients, a power flow model 
can be configured at any time, consisting of all trains, traction substations, power supply cables, 
and earth. This creates a load flow circuit at each step of the simulator, taking snapshots of the train’s 
position relative to the traction substations and other trains. In this study, a power flow model of a DC 
electrical power supply sys- tem for trains [21], taking into account the rail potential, is presented. 
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Figure 1. Train Power Flow Model Diagram 

 
 Thus, the power flow model is used to explain the voltage at the traction substation, the 
voltage at the train, the power consumed by each substation, the rail potential [22], and the power 
loss. Supported by the train model as a conductance matrix that can be positive when requiring 
current and negative when providing current due to regenerative braking, as seen in figure (1). 
The power supply to the train is modelled as a conductance in the simulation calculation. 
 The figure (1) is converted into a mathematical description of power flow [23] with a single 
train motion model as follows: 

[𝐼𝐼] = [𝐺𝐺]. [𝑉𝑉] (2) 

where I is the current matrix, G is the conductance matrix, and V is the voltage matrix of the whole 
power flow model. Then, if the transmission in figure (1) is called point p to point q, then equation 
(2) is developed for the conductance matrix element, which is the element that describes the 
resistance due to the distance between the traction substation and the following traction 
substation, or between the traction substation and the train and between the train and the train, 
where the element for resistance is on the supply conductor and the element for resistance is on the 
rail road. Therefore, equation (2) is also developed for conductance matrix elements, which are 
elements that describe the resistance in traction substations or trains. And also developed as a 
grounding element for rails to distant earth, so equation (2) was developed and translated for the 
current at the traction substation into the following algebraic equation, 

𝐼𝐼𝐶𝐶(𝑖𝑖) =
1
𝑅𝑅𝑠𝑠
𝑉𝑉𝐶𝐶(𝑖𝑖) −

1
𝑅𝑅𝑠𝑠
𝑉𝑉𝑅𝑅(𝑖𝑖) −

1
𝑑𝑑 𝑥𝑥 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑉𝑉𝐶𝐶(𝑖𝑖 + 1) − 𝐼𝐼𝑠𝑠 

𝐼𝐼𝑅𝑅(𝑖𝑖) =
−1
𝑅𝑅𝑠𝑠

𝑉𝑉𝐶𝐶(𝑖𝑖) + (
1
𝑅𝑅𝑠𝑠

+
1
𝑅𝑅𝑠𝑠𝑠𝑠

+
1
2𝐺𝐺𝑟𝑟𝑠𝑠)𝑉𝑉𝑅𝑅(𝑖𝑖) −

1
𝑑𝑑 𝑥𝑥 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑉𝑉𝑅𝑅(𝑖𝑖 + 1) + 𝐼𝐼𝑠𝑠 

(3) 

where IC(i) is the current on the conductor of the ith traction substation, V C(i) is the voltage on the 
conductor of the ith traction substation, V R(i) is the voltage on the rail of the ith traction substation, 
V C(i + 1) is the voltage on the conductor of the (i + 1)th traction substation, IR(i) is the current 
on the rail traction substation, V R(i + 1) is the voltage on the rail of the i+1st traction substation. 
In addition to being developed for the traction substation, it is also developed for the current on 
the train as follows, 

      𝐼𝐼𝑡𝑡𝑟𝑟𝐶𝐶 (𝑖𝑖) = 1
𝑅𝑅𝑡𝑡𝑡𝑡
𝑉𝑉𝑡𝑡𝑟𝑟𝐶𝐶 (𝑖𝑖) − 1

𝑅𝑅𝑡𝑡𝑡𝑡
𝑉𝑉𝑡𝑡𝑟𝑟𝑅𝑅(𝑖𝑖) − 1

𝑐𝑐 𝑥𝑥 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑉𝑉𝐶𝐶(𝑘𝑘) 

     𝐼𝐼𝑡𝑡𝑟𝑟𝑅𝑅 (𝑖𝑖) =
−1
𝑅𝑅𝑡𝑡𝑟𝑟

𝑉𝑉𝑡𝑡𝑟𝑟𝐶𝐶 (𝑖𝑖) + (
1
𝑅𝑅𝑡𝑡𝑟𝑟

+
1
2𝐺𝐺𝑟𝑟𝑠𝑠)𝑉𝑉𝑡𝑡𝑟𝑟𝑅𝑅(𝑖𝑖) −

1
𝑑𝑑 𝑥𝑥 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑉𝑉𝑅𝑅(𝑘𝑘) 

 

(4) 

 

e × Rrail e1 × 

d × Rrail d1 × 

e × Rcond e1 × 

d × Rcond d1 × 
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where 𝐼𝐼 C
tr

 is the current on the conductor of the train, 𝐼𝐼 R
tr

 is the current on the rail of the train, 

𝑉𝑉 C
tr

 is the conductor voltage of the train, 𝑉𝑉 R
tr

 is the rail voltage of the train, Vc (k) is the conductor 
voltage of the kth traction substation, VR (k) is the rail voltage of the kth traction substation. 
 After explaining the components that combine to make equation (2), which describes the load 
flow equation at a given time that changes with time and train position, equation (1) is used to 
obtain the electrical power provided by all the traction substations. The largest amount of electric 
power during a train trip, or peak demand, can be formulated as follows: 

𝑃𝑃𝑚𝑚𝑤𝑤𝑥𝑥(𝑖𝑖)  =  sup{𝑃𝑃 (𝑖𝑖)|𝑃𝑃 (0)  ≤  𝑃𝑃 (𝑖𝑖)  ≤  𝑃𝑃 (𝑤𝑤𝑝𝑝)}[𝑘𝑘𝑘𝑘 ] (5) 

where sup is the supremum function (largest value) of P (i) provided that P (i) is in one period of train 
travel (0 to tp) and i is the ith traction sub-station. And consequently, the electrical power of each 
traction substation at any given time, or the energy supplied by the traction substation can be 
calculated, as described by the following equation: 

𝐸𝐸 = �𝑃𝑃𝚥𝚥�Δ𝑤𝑤
𝑚𝑚

𝑗𝑗=1

[𝑘𝑘𝑘𝑘ℎ] 
(6) 

where  𝑃𝑃𝚥𝚥� is the average power of the jth traction substation, m is the number of traction 
substations, ∆t is a specific time. 
 
C. Multi-objective Problem 
 The difference in peak demand, equation (5), between traction  substations in a certain period 
is summed up. Then the sum of the differences will be minimized so that the traction substations 
each bear almost the same peak demand over a certain period of time. So this affects the positions 
of each substation to approach the source of peak demand for each substation at a certain time. 
where, the positions of traction substations that are close to the source of peak demand for each 
substation at a certain time will change the values of the conductance matrix G in equation (2). 
Through equations (3) and (4), the changes in the position of the sub- station change the value of Rcond 
and Rrail and so on, thus changing the  

        𝑓𝑓1 = ���𝐷𝐷𝑚𝑚𝑟𝑟𝑥𝑥𝑟𝑟 − 𝐷𝐷𝑚𝑚𝑟𝑟𝑥𝑥𝑗𝑗�
𝑐𝑐𝑠𝑠𝑠𝑠

𝑗𝑗

𝑐𝑐𝑠𝑠𝑠𝑠

𝑟𝑟

 

        𝑓𝑓2 = ���𝐸𝐸𝑟𝑟 − 𝐸𝐸𝑗𝑗�
𝑐𝑐𝑠𝑠𝑠𝑠

𝑗𝑗

𝑐𝑐𝑠𝑠𝑠𝑠

𝑟𝑟

 

subject to 

𝑥𝑥𝑘𝑘𝑟𝑟 ≤ 𝑥𝑥𝑘𝑘 ≤ 𝑥𝑥𝑘𝑘𝑘𝑘 

𝑥𝑥𝑐𝑐𝑟𝑟 ≤ 𝐷𝐷𝑟𝑟 ≤ 𝑥𝑥𝑐𝑐𝑘𝑘 

where index: 

𝑖𝑖 = 1 𝑤𝑤𝑡𝑡 𝑛𝑛𝑠𝑠𝑠𝑠 

𝑗𝑗 = 1 + 1 𝑤𝑤𝑡𝑡 𝑛𝑛𝑠𝑠𝑠𝑠 

𝑘𝑘 = 1 𝑤𝑤𝑡𝑡 𝑛𝑛𝑠𝑠𝑠𝑠 

𝑙𝑙 = 𝑙𝑙𝑡𝑡𝑤𝑤𝑙𝑙𝑙𝑙 

𝑢𝑢 = 𝑢𝑢𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙 

 

(7) 

conductance matrix G in equation (2). But the change in position of each substation is limited by the 
minimum distance criteria between traction substations. However, if the peak demand difference 
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of each substation is close to the same at a certain time, the amount of energy required, equation 
(6) by each traction substation at a certain time will be higher, and vice versa [9]. 
 The problem of optimal location and capacity power of traction sub- stations in this paper, from 
the previous paragraph and based on [24], is described as an optimization problem with multiple 
objective functions, as  follows  where  Dmaxi    is  ith  peak  demand,  Ei  is  ith  energy  needs,  xk is 
locations of traction substations and xc is nominal power of traction substation. 
 The solution to the multiobjective optimization problem in equation (7) is to find or search for 
a set of solutions that optimally satisfy all objective functions [25] [26]. The set of optimal solutions 
that can be found is known as the non-dominant solution or Pareto population (optimality) [24]. 
 
3. Formulation Optimization with EMO 
 The EMO optimization method has the peculiarity of being reliable   in dealing with complex 
system problems such as system non-linearity and systems with discrete values [27]. These 
problems cannot be solved by single-objective function optimization. The difference from single 
objective function optimization is that in multi-objective function optimization, there are two 
spaces: a decision space and an objective space. The decision space is the space for independent 
variables that are satis-ied by the objective function. And the objective space is the result of the 
objective functions, as shown in figure (2). Where the yellow circles in the decision space are the 
pareto optimal solutions, they are the pareto optimal fronts in the objective space. 
 
  

 
Figure 2. Two space in Multi-objective Optimization [28] 

 
 In general, there are two steps to solving EMO optimization: firstly a set of Pareto optimal 
solutions is found. Secondly, a decision is made from the set of Pareto optimal solutions. 
The proposed use of EMO in optimizing the location and capacity of traction substations can be 
seen in the flowchart in figure (3). It starts with the generation of data from the simulation results 
of the power requirements of the trains, the position of the trains, and the capacity of the traction 
substation; this is in the multi-train characteristics block. The multi-train characteristics subroutine 
block diagram starts with the single-train characteristics equation and rail contour data, train 
weight, and scheduling. These data are calculated for multiple trains based on the headway and 
Railway Time Table, resulting in the number of trains and their positions. Then the number of trains 
and their positions are calculated for the electrical power required, resulting in the characteristics of 
multiple trains. Then the information from the multi-train block characteristics is given to the block 
which calculates the power demand and energy needs of each traction substation for each 
predetermined journey. Then, the objective functions for the power demand and energy needs are 
given in equation (7). The equation will be used in the next block, the optimization calculation 
block diagram. 
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 In the optimization block diagram, the search for this non-dominant solution region is done by 
many algorithms, but in this paper, the NSGA- ii method is used, where the NSGA-ii method [29] 
has been widely used due to its reliability. The solutions or elements of the decision space in this paper 
are traction substation location and capacity power. The solutions are sorted into different fronts 
using a non-dominated fast sorting procedure. Then, at each generation, N descendant solutions 
are generated from the current population of N solutions. The generated descendant solutions are 
merged with the current population so that there are (N + N) solutions in the merged population. 
Then, it is selected as the next population in the following way: First, the non-dominated solution in 
the merged population is ranked 1 (i.e., the best rank). Second, the solution with rank 1 is removed. 
Third, the non-dominated solutions are assigned rank 2 among the remaining solutions in the 
merged population. In this way, all solutions are ranked. Solutions with the same rank are compared 
using their crowding distance. The same solution evaluation scheme based on non-dominant sorting 
and crowding distance is also used in binary tournament selection for parent selection for the next 
generation [28]. 
 After the optimization calculation block is finished, which produces a Pareto optimum for the 
location of the traction substations and their capacity per generation. The Pareto optimal solutions 
are forwarded to the higher-level information with the equation (8) block, where the objective 
function calculation is performed based on the optimal Pareto data generated by the loop. 

𝑓𝑓𝑐𝑐𝑜𝑜𝑗𝑗 = 𝛼𝛼1 ∑ |𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑟𝑟+1|𝑐𝑐𝑠𝑠𝑠𝑠
𝑟𝑟 + 𝛼𝛼2 ∑ 𝑐𝑐𝑟𝑟2

𝑐𝑐𝑠𝑠𝑠𝑠
𝑟𝑟  (8) 

 The choice of this final solution will depend heavily on the particular preferences of the human 
decision-maker. Then, according to the results of the objective function, the optimal traction 
substation location and capacity power are obtained. 
 
4. Result and Discussion 
 To find the optimum location and capacity power of DC traction substations, the following data 
are used: 13 passenger stations, a total distance of about 15 km, and at certain positions on the 
track there are changes in elevation (table 1) and changes in curvature (table 2). 
 

Table 1. The slope of rail track 
No Position 

begin (km) 
Altitude 

begin (m) 
Position 
end (km) 

Altitude 
end (m) 

Gradient 
(0/00) 

1 8.63 14 10.17 -14 0.0182173 
2 12.31 -16.6 13.06 -24 0.0098013 
3 13.98 -24 14.96 -18 0.0061038 

 
 And assuming that the planned speed of the train is 35 km/h, the maximum speed is 80 km/h, 
the acceleration is 3.31 km/h, the deceleration is 2.88 km/h, and the delay is 0.15 km/h. And the 
train set consists of 4 trains with traction motors and 2 trains without traction motors and with 200 
passengers per train, where the data are as follows Wm = 191.87 tons, Wt = 89.06 tons, and We = 
1.1W  tons. Where Wm  is the weight of four cars with motors, Wt is the weight of two cars without 
motors, W = Wm + Wt is the total weight of the train set, n is the number of trains, and We is the 
effective weight of 0.8...1.5, which is chosen to be 1.1. And the headway is 10 minutes, and in the 
morning rush hour for 3 hours. The characteristics of the traction motor are maximum power of 
191.5 kW, tractive force of 20.9 kN, and motor efficiency of 0.85. Four trains with motors, where 
one train has four traction motors, so one train set has 16 traction motors. And the power assumption 
for auxiliary needs (air conditioning and lighting) is 170 kW. It is assumed that all traction 
substations are connected, and the calculation of power and energy consumption is performed by 
sampling the railway power supply system. For multi-objective optimization with GA will using 
data such as size of population 100, probability of crossover 0.5, probability mutation 0.3, number 
of generation 10, number point to display from the optimal population 10. The simulator program 
is SCILAB 6.1.1 with the solver optim nsga2, the others paper already used [30]. 
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Table 2. The slope of rail track 

No Position 
begin (km) 

Position 
end (km) 

Curvature 
(degree) 

1 2.47 2.64 90 
2 9.31 9.81 120 
3 13.06 13.98 130 

 

 
Figure 3. Proposed Algorithm for Location and Capacity Power of DC Traction Substations 

 
Table 3. Specification DC Traction System 

No Item Specification 
1 Catenary Resistance 0.014 ohm/km 
2 Rail Resistance 0.0118 ohm/km 
3 Substation to earth Resistance 0.5 ohm 
4 Rail Conductance 0.00001 mho 
5 Substation Rated Voltage 1500 V 
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Calculate of (Dmaxi, Ene) per TS 
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TS Position and Power Capacity 

STOP 
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Figure 4. Pareto optimal front for 3 substations with 10 minute headway 

 
 The blue nodes in figure(4) or figure(5) are representative of the parameter objectives, obj 
Dmax and obj Ene, in table (4) or table (5). 
 

Table 4. Pareto optimal solutions for 3 substations with 10 minute headway 
SS1 
(km) 

SS2 
(km) 

SS3 
(km) 

Rated Power 
(kW) 

obj Dmax 
(kW) 

obj Ene 
(kWh) obj HLI 

2.58 7.43 11.78 3267 62.089 0.181 5.337 
3.38 6.02 13.33 3188 2.012 34.806 5.081 
2.58 7.43 11.76 3280 94.861 0.107 5.380 
2.88 7.43 11.88 3122 27.230 1.907 4.874 
2.88 7.14 11.70 3115 8.672 8.472 4.852 
2.56 7.45 11.76 3277 72.065 0.176 5.371 
2.55 7.40 11.81 3243 11.669 2.155 5.249 
2.90 7.33 11.88 3122 9.706 2.377 4.874 
2.85 7.36 11.83 3122 18.806 2.099 4.874 
2.57 7.45 11.80 3230 46.746 0.419 5.217 
2.80 6.89 12.12 3301 6.373 9.208 5.449 
2.56 7.44 11.75 3283 95.737 0.045 5.390 
3.19 7.10 11.96 3199 4.441 9.632 5.117 
2.61 7.41 11.82 3260 53.628 0.212 5.313 
2.26 7.60 11.78 3306 29.718 0.559 5.466 

 
 The pareto optimal solutions for 3 and 4 traction substations are shown in figure(4) and figure(5) 
with blue nodes. The final population points (yellow points) are dominant solutions near the non-
dominate solutions (the pareto optimal front). The result is the 10th generation of multi-objective 
optimization with NSGA-ii. There are many solutions (the blue points in the figure). The solution 
found is optimal according to two objective functions in equation (7), both of which minimize the 
difference in the values of the peak power demand and the energy needs between the traction 
substations. 
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Figure 5. Pareto optimal front for 4 substations with 10 minute headway 

 
Table 5. Pareto optimal solutions for 4 substations with 10 minute headway 

SS1 
(km) 

SS2 
(km) 

SS3 
(km) 

SS4 
(km) 

Rated Power 
(kW) 

obj Dmax 
(kW) 

obj Ene 
(kWh) obj HLI 

1.60 5.76 9.22 12.34 2340 7.028 7.466 2.7368 
2.43 5.50 9.20 12.36 2411 9.445 5.993 2.9061 
1.80 5.94 9.34 12.55 2254 67.816 1.325 2.5412 
1.68 6.03 9.21 12.32 2261 12.319 5.050 2.5552 
1.80 5.89 9.21 12.40 2263 10.279 5.862 2.5605 
1.75 6.01 9.33 12.54 2262 53.750 1.326 2.5584 
1.72 6.02 9.39 12.43 2270 20.911 2.978 2.5772 
1.79 5.94 9.32 12.42 2254 28.145 2.604 2.5391 
1.82 5.94 9.32 12.48 2254 44.058 2.103 2.5406 
1.80 5.93 9.33 12.54 2254 79.723 1.319 2.5392 
1.75 5.95 9.29 12.40 2256 20.294 3.399 2.5457 
1.72 6.01 9.34 12.52 2272 30.805 2.323 2.5813 
1.77 5.91 9.30 12.37 2263 13.987 4.478 2.5602 
1.76 5.91 9.21 12.40 2254 20.048 4.393 2.5407 
1.66 6.01 9.21 12.35 2258 10.777 5.759 2.5496 
1.82 5.94 9.32 12.50 2254 45.139 1.812 2.5412 

 
 From the pareto optimal solution table, a single solution is selected through the higher-level 
information equation 8 by giving a weight factor with a certain value, where the difference in distance 
between substations is given a weight factor of one while the average nominal power to the second 
power is given a weight factor of half. This results in a single solution (cells fully blocked in 
tables (4) and (5) that is the answer to EMO optimization. 
 In the case of three traction substations, it is obtained by simulation as follows: the location of 
the first traction substation is 2.88 km, the second is 7.14 km, and the third is 11.70 km, and the 
nominal power of the traction substation is 3.115 MW. This satisfies the lowest of equation (8) 
of 4,852 among other optimal solutions. As for the case of four traction substations, the location 
of the first traction substation is 1.79 km, the second is 5.94 km, the third is 9.32 km, the fourth 
is 12.42 km, and the nominal power of the traction substation is 2.254 MW. This result fulfils the 
lowest of equation (8) of 2.5391 among other optimal solutions. 
 Then the four traction substations case is compared with the Jakarta MRT data which has 4 
traction substations with the positions of the first traction substation 0.377 km, second 4.985 km, 
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third 8.269 km, fourth 13.98 km and the nominal power of the traction substation of 4 MW with a 
headway of 10 minutes and without considering the energy from regenerative braking, where the 
value of the result of the function equation (8) is obtained as 21.603. 
 
Some highlights of the simulation results and comparison with data from the Jakarta MRT are: 
1. The difference between the simulation results of three traction substations with a nominal power 

of 3.115 MW and four traction substations with 2.254 MW. 
2. the difference of DMax of four traction substations against three trac- tion substations, while 

ENe of four traction substations is relatively smaller against three traction substations. 
3. Compared with the simulation results with EMO optimization of 2.5391, the simulation 

results are better than the Jakarta MRT data of 21.603. 
 And the single objective optimization proposed by [9] as a comparative method by using the 
Jakarta MRT data in the form of the positions of the Traction Substations (0.337 km, 4.985 km, 
8.629 km and 13.98 km) assuming a headway of 10 minutes and without considering the energy of 
regenerative braking the single objective function value of first substation 
2.55 km, second substation 6.05 km, third substation 9.54 km, fourth substation 13.26 km, and 
rated power 4.162 MW is greater than the simulation results with the multi-objective function. 
 
5. Conclusion 
 The use of the EMO optimization method in finding the optimal loca- tion and capacity Power 
of the DC traction substation for the rail power system can be carried out. Experiments were 
carried out on a 15 kilo- meter railway track with three or four traction substations. The load 
sharing between traction substations is close to the same, or optimal, and minimum nominal power. 
To achieve optimal conditions, there are two objective functions that must be fulfilled, and the 
decision variables are the location of the traction substations and the variable capacity of the 
traction substation. The EMO optimization method is carried out in two steps: finding the Pareto 
optimal solutions and then using a higher-level information function to determine a single solution 
among the Pareto optimal solution data. 
 Future research can expand the case by including regenerative braking factors to determine the 
location and capacity of the traction box. This requires an algorithm that can change the 
conductance matrix between trains under regenerative braking or during acceleration. Of course, 
with fixed assumptions, the traction substation is a rectifier substation that does not have an 
inverter function. 
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