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Abstract 

The analysis of an airplane wing's airfoil shape plays a critical role in determining aerodynamic performance, 
specifically impacting lift and drag forces. This study investigates two aluminum alloys, Aluminum Alloy 7075-T6 SN 
and Aluminum Alloy 7050-T7451, to evaluate their effectiveness in enhancing lift and drag on NACA 0018 and NACA 
0024 airfoil profiles. Using the ANSYS Fluent software, simulations are conducted at an airflow speed of 200 m/s to 
analyze pressure contours and velocity contours associated with each material. The results indicate that Aluminum 
Alloy 7075-T6 SN yields the highest lift and drag coefficients for both airfoil profiles. For NACA 0018, the lift 
coefficient reaches 6.83 N, while the drag coefficient is 6.89 N. Similarly, for NACA 0024, the lift coefficient is 
observed at 3.23 N, and the drag coefficient at 4.64 N when using Aluminum Alloy 7075-T6 SN. These findings 
suggest that Aluminum Alloy 7075-T6 SN offers superior performance in optimizing the aerodynamic forces of lift 
and drag for these airfoil designs. The study’s insights could inform material selection for airfoil design, enhancing 
efficiency in various aerodynamic applications. 
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INTRODUCTION  

An airfoil is a structural design characterized by its specific cross-sectional shape, 
enabling it to efficiently interact with fluid flow, making it highly applicable in diverse 
fields, including aircraft wings, wind turbines, compressors, and turbine blades in jet 
engines [1]. The distinctive shape of an airfoil is essential for creating aerodynamic forces 
that allow an aircraft to achieve and sustain flight at high altitudes. When air flows over 
and beneath an airfoil, a difference in pressure is generated, which plays a critical role in 
lift production [2]. 

This pressure differential is based on principles of fluid dynamics and 
aerodynamics. As air moves across the curved surface of the wing, it accelerates, creating 
a region of lower pressure above the wing compared to the pressure below it. According 
to Bernoulli's principle, an increase in fluid velocity leads to a decrease in pressure. This 
principle explains why the pressure above the wing is reduced relative to the higher 
pressure beneath it, thereby generating the upward lift force necessary for flight [3]. 

The ability to optimize this aerodynamic effect is crucial not only in aviation but 
also in energy and mechanical applications where efficient airfoil design can enhance 
performance. For instance, in wind turbines, well-designed airfoils maximize energy 
capture from wind, leading to improved energy conversion efficiency. Similarly, in 
compressors and jet engines, airfoil shapes are optimized to reduce drag while 
maximizing the force exerted on the blades, thus improving fuel efficiency and 
performance. 

The study of airfoil dynamics continues to be a significant area in engineering 
research, as advancements in materials and simulation tools enable researchers to 
develop airfoil profiles that optimize aerodynamic properties, minimize drag, and 
increase lift. This contributes to innovations in aircraft design, renewable energy 
technology, and high-performance engineering applications, ultimately pushing the 
boundaries of efficiency and sustainability in fluid-based systems. 

The shape of an airfoil on an airplane wing significantly influences the aerodynamic 
performance of the aircraft, directly impacting its maneuverability and stability in flight 
[4]. The National Advisory Committee for Aeronautics (NACA) has been instrumental in 
advancing airfoil design, developing a series of standardized airfoil profiles that have been 
widely adopted in aviation engineering. These NACA airfoils serve as foundational models 
for designing and optimizing aircraft wings to enhance lift, reduce drag, and improve flight 
efficiency under various operating conditions [5-6]. The diverse range of NACA airfoil 
shapes allows engineers to tailor wing designs for specific performance requirements, 
whether for high-speed jets, fuel-efficient commercial planes, or highly maneuverable 
fighter aircraft. By setting a benchmark in airfoil design, NACA’s contributions continue 
to play a crucial role in modern aeronautical engineering, influencing innovations in both 
civil and military aviation. 

This study focuses on the NACA 4-digit airfoil series, specifically NACA 0018 and 
NACA 0024, to assess the aerodynamic performance of two materials: Aluminum Alloy 
7075-T6 SN and Aluminum Alloy 7050-T7451. The objective is to determine which alloy 
provides the highest lift force and to analyze lift and drag coefficients, velocity profiles, 
and pressure distributions across the two airfoil models [7]. Testing will involve 
simulating airflow conditions to compare the aerodynamic properties of each alloy, which 
could yield insights into optimal material selection for enhancing lift and reducing drag. 
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Furthermore, the findings of this research hold potential applications for wind turbine 
design, particularly vertical axis wind turbines, where minimizing drag can improve 
rotational torque and overall energy conversion efficiency [8-9]. By exploring material 
performance in these airfoils, this study contributes valuable data for both aeronautical 
engineering and renewable energy technology. 

The objectives of this research are threefold: first, to evaluate and compare the 
aerodynamic performance of Aluminum Alloy 7075-T6 SN and Aluminum Alloy 7050-
T7451 on NACA 0018 and NACA 0024 airfoils, with a focus on determining which material 
produces superior lift and drag forces. Second, this study aims to analyze the effects of 
material selection on the maneuverability and stability of aircraft wings, providing 
valuable data for improving aeronautical design through optimized lift and drag 
coefficients. Lastly, the research seeks to extend its findings to potential applications in 
renewable energy systems, particularly vertical axis wind turbines, by assessing how 
material choice can enhance rotational torque and energy conversion efficiency. Through 
these objectives, the study contributes insights into material science and aerodynamic 
engineering that are essential for advancing performance in both aviation and energy 
sectors. 

 

METHODOLOGY  

This research employs advanced computational analysis techniques, specifically 
Computational Fluid Dynamics (CFD), using ANSYS R18 software to investigate the 
aerodynamic properties of selected airfoil geometries. CFD is a powerful tool that allows 
for the simulation of fluid flow around complex shapes, providing detailed insights into 
parameters such as lift, drag, pressure distribution, and velocity contours. In this study, 
the focus is on NACA 4-digit series airfoils, particularly the NACA 0018 and NACA 0024 
profiles, chosen for their relevance in aeronautical applications. These airfoils, depicted 
in Figure 1, have been widely studied and are frequently used in various engineering 
applications, including aircraft wing and wind turbine blade designs. 

 

 

 

Figure 1. NACA Airfoils 0018 and 0024 
 

 Next, the NACA 0018 and 0024 airfoils will be designed using the software 
Solidworks shown in Figure 2 with an angle of attack of 10°. From this design, initial 
research data will be obtained in Table 1 and Table 2 which will be used in this research. 
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Figure 2. NACA 0018 Airfoil design using Solidworks 

 

Table 1: NACA Airfoil Data 0018 
Variable Information 

NACA type NACA 0018 (naca0018-il) 

type of material 
Aluminum Alloy 7075-T6 SN 
Aluminum Alloy 7050-T7451 

Mass NACA 0018 Al Alloy 7075-T6 SN 1387,98 grams 
Mass NACA 0018 Al Alloy 7050-T7451 1397,86 grams 

NACA Volume 0018 Al Alloy7075-T6 SN 493944,00 mm3 
NACA Volume 0018 Al Alloy 7050-T7451 493944,00 mm3 

Surface Area NACA 0018 Al Alloy 7075-T6 SN 85678,75 mm2 
Surface Area NACA 0018Al Alloy 7050-T7451 85678,75 mm2 

 

Table 2: NACA Airfoil Data 0024 
Variable Information 

NACA type NACA 0024 (naca0024-il) 

type of material 
Aluminum Alloy 7075-T6 SN 
Aluminum Alloy 7050-T7451 

Mass NACA 0018 Al Alloy 7075-T6 SN 1851,12 grams 
Mass NACA 0018 Al Alloy 7050-T7451 1864,30 grams 

NACA Volume 0018 Al Alloy7075-T6 SN 658763,03 mm3 
NACA Volume 0018 Al Alloy 7050-T7451 658763,03 mm3 

Surface Area NACA 0018 Al Alloy 7075-T6 SN 88349,29 mm2 
Surface Area NACA 0018Al Alloy 7050-T7451 88349,29 mm2 

 

 Followed by Computational Fluid Dynamic (CFD) analysis techniques using ANSYS 
R 18 software [12]. The model used in ANSYS Fluent is K-Epsilon 2-eqn Standard with an 
inlet speed of 200 m/s. 
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RESULT AND DISCUSSION 

Based on the material simulation results on the NACA 0018 and 0024 Airfoils, the 
contour velocity and pressure around the Airfoil are obtained. The velocity and pressure 
contours for NACA 0018 on Aluminum Alloy 7075-T6 SN and Aluminum Alloy 7050-
T7451 materials are shown in Figure 3 to Figure 6 while the velocity and pressure 
contours for NACA 0024 on two types of material are shown in Figure 7 to figure 10 [13]. 

 

Figure 3: Speed Contour NACA 0018 Alloy 7075-T6 SN 

 

 

Figure 4: Pressure Contour NACA 0018 Al Alloy 7075-T6 SN 
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Figure 5: Speed Contour NACA 0018 Alloy 7050-T7451 

 

 

Figure 6: Pressure Contour NACA 0018 Al Alloy 7050-T7451 
 

 

Figure 7: Speed Contour NACA 0024 Al Alloy 7075-T6 SN 
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Figure 8: Pressure Contour NACA 0024 Al Alloy 7075-T6 SN 

 

 

Figure 9: Speed Contour NACA 0024 Alloy 7050-T7451 

 

 

Figure 10: Pressure Contour NACA 0018 Alloy 7050-T7451 
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 Furthermore, the results of the lifting force and drag force of NACA 0018 and 
0024 are shown in Table 3 and Table 4. 

Table 3: NACA 0018 simulation results with variations in two types of materials 
Material NACA 0018 

Lift Force (N) Drag Force (N) 
Al Alloy 7075-T6 SN 1,17E+03 1,18E+02 
Al Alloy 7050-T7451 1,08E+03 1,13E+02 

 
Table 4: NACA 0024 simulation results with variations in two types of materials 

Material NACA 0024 
Lift Force (N) Drag Force (N) 

Al Alloy 7075-T6 SN 5,71E+02 8,19E+01 
Al Alloy 7050-T7451 4,51E+02 6,49E+01 

 

 By obtaining simulation data, the lift coefficient and drag coefficient of Airfoil 
NACA 0018 and 0024 can be calculated on two types of material. Lift and drag coefficients 
can be calculated using the formula [14]: 

   Cl = 
Fl

0,5 x V2 x A
         (1) 

  Cd = 
Fd

0,5 x V2 x A
         (2) 

Where: 

Cl = Lift force coefficient  
Cd = Drag force coefficient 
Fl = Lift force that occurs 
Fd = Drag force that occurs 
V = Fluid speed 
A = Model area 
 
 By using the formula above, the lift and drag coefficients for Airfoil NACA 0018 and 
0024 are obtained for the two types of material shown in Table 5 and Table 6. 

 
Table 5: NACA 0018 calculation results with variations in two types of material 

Material NACA 0018 
Lift Force (N) Drag Force Lift Coefficient Drag Coefficient 

Al Alloy 7075-T6 SN 1,17E+03 1,18E+02 6,83E-07 6,89E-08 
Al Alloy 7050-T7451 1,08E+03 1,13E+02 6,30E-07 6,59E-08 

 

Table 6: NACA 0018 calculation results with variations in two types of material 
Material NACA 0024 

Lift Force (N) Drag Force Lift Coefficient Drag Coefficient 
Al Alloy 7075-T6 SN 5,71E+02 8,19E+01 3,23E-07 4,64E-08 
Al Alloy 7050-T7451 4,51E+02 6,49E+01 2,55E-07 3,67E-08 
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 Seen in Table 5 and Table 6 shows the lift coefficient and drag coefficient for two 
types of NACA Airfoil with material variations, namely Aluminum Alloy 7075-T6 SN and 
Aluminum Alloy-T7451. Where the highest lift force and drag force use Aluminum Alloy 
7075-T6 SN material. 

 

CONCLUSION  

Based on the simulation results, it is concluded that the Aluminum Alloy 7075-T6 SN 
material exhibits superior aerodynamic performance on both NACA 0018 and NACA 0024 
airfoils. This material consistently achieved higher lift and drag forces compared to 
Aluminum Alloy 7050-T7451, indicating its effectiveness in enhancing the wing's 
aerodynamic efficiency. Specifically, for the NACA 0018 airfoil, the 7075-T6 SN alloy 
generated a lift force of 1,170 N and a drag force of 118 N, while the NACA 0024 airfoil 
produced a lift force of 571 N and a drag force of 81.9 N with the same material. These 
results suggest that the 7075-T6 SN alloy may offer improved maneuverability and 
stability, essential for applications requiring optimized lift and drag performance. The 
findings of this study not only provide valuable insights for material selection in 
aeronautical engineering but also offer potential applications for wind turbines, where 
material choice significantly impacts rotational torque and efficiency. This study 
reinforces the importance of selecting high-performance materials for airfoils to 
maximize aerodynamic benefits across various engineering fields. 
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