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ARTICLE INFO ABSTRACT

Ripeness estimation of oil palm fresh fruit bunches is a crucial component in the management of oil palm
harvesting, as it will lead to profitability and marketability of the product. The purpose of this study is to develop
an oil palm maturity detection device that is not only able to identify oil palm maturity, but also predict harvest
time. In this work, the resonant frequency data were collected using an inductive sensor from a total of 600 fruits
at various ages of ripeness. Intelligent algorithms are embedded into the system to recognize the oil palm ri-
peness, i.e., discriminant analysis for identifying ripeness and polynomial regression for forecasting harvest time.
In oil palm plantations, we prepared 55 fresh fruit bunches to identify their ripeness and forecast harvest time.
Based on the field test performance, the inductive sensor system can determine the oil palm ripeness with an
accuracy of 100 % and forecast the harvest time with RMSE of 13.45. Therefore, the proposed system has the
potential to be implemented in the evaluation of harvesting oil palm due to its various advantages, i.e., being
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accurate, rapid and non-invasive.

1. Introduction

The total oil palm cultivated in Indonesia increased by 1.25%-14
million hectares in 2017 (Ministry of Agriculture of the Republic of
Indonesia, 2018). Indonesia produces an average of 2.69 tons of oil
palm fresh fruit bunches (FFB) per hectare. The oil palm companies in
Indonesia significantly contribute to gross domestic products, around
3.5 %. Currently, Indonesia produces more than 45 % of the world’s oil
palm production and has become a leading player in the world oil palm
trade since the 1950s (Makky and Soni, 2014). A massive deal of re-
search on oil palm has been carried out by the universities, research
institutes and oil palm industries to improve oil quality (Dradjat, 2012;
Wisena et al., 2014). In order to produce high-quality oil, the harvesting
process is crucial, since it relates to the oil content level. The harvesting
process must be conducted when the fruit is at optimal ripeness (about
151-180 days after anthesis) to get high oil content (Saragih, 2019).
However, on-field, the oil palm company is dealing with thousands of
palm trees with different stages of maturity. The harvesting schedule
has been arranged in detail to identify harvest time, but this is not good
enough to solve this problem, as each tree produces FFB with a different
maturity. Besides, the conventional method still uses the number or
percentage of detached fruits per bunch as a measure of the FFB ripe-
ness. This method is a time-consuming, labor-intensive process and is
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prone to human error (Makky and Soni, 2014; Saeed et al., 2012).
Therefore, the process of harvesting oil palm requires a technological
breakthrough that is reliable, non-invasive, accurate and rapid to
evaluate the FFB maturity.

Various advanced technologies have been involved in detecting oil
palm maturity, among others based on near-infrared spectroscopy
(Makky and Soni, 2014; Saeed et al., 2012), image processing (Alfatni
et al., 2014), flavonoid and anthocyanin content (Hazir et al., 2012)
and inductive sensor (Misron et al., 2017). Recently, the reliable pro-
mising technology in detecting oil palm maturity is based on the in-
ductive sensor. This technology was first proposed by Harun et al.
(2013), where they analyze the resonance frequency of the palm fruit.
They stated that the riper the oil palm fruit, the higher its resonant
frequency. Furthermore, inductive sensors have been used to solve
various issues in the agriculture field such as conductivity of topsoil
estimation (Ambru$ et al., 2017), dairy cow health monitoring
(Minnaert et al., 2018) and soil water content prediction (Kachanoski
et al., 1988). Therefore, this study adopted this technology in the de-
velopment of an oil palm ripeness detection device with several mod-
ifications such as frequency selection, electrical circuit and inductive
sensor design.

However, based on the state of the art, overall the oil palm maturity
detection devices have only one single capability, i.e., identifying the
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oil palm ripeness. In this study, we propose a device that is not only
able to identify the oil palm ripeness, but also predict the harvest time.
Clearly, there is a scope for improvement. The knowledge on harvest
time is vital, because if the FFB detected is unripe, then when to harvest
it. Through the proposed device, oil palm harvest management will run
more effectively and efficiently.

For the fruitfulness of this system, an intelligent algorithm such as
artificial neural network, discriminant analysis, deep learning or sup-
port vector machine (Faricha et al., 2018; Kuo and Faricha, 2016;
Nanda et al., 2018a; Nazari, 2019; Stowell et al., 2019) is needed to
install the device capabilities in identifying ripeness and forecasting
harvest time of oil palm. In this study, because the proposed device is a
portable hand-held device, the primary consideration in algorithm se-
lection is an accurate and simple formula to provide rapid decision-
making. Various involved algorithms in detecting oil palm ripeness are
multiple linear regression (Makky and Soni, 2014), discriminant ana-
lysis (Saeed et al., 2012), stochastic gradient boosting trees (Hazir et al.,
2012), k-nearest neighbor (Alfatni et al., 2014), artificial neural net-
work (Cherie, 2015) and partial least square (Igbal et al., 2015). Based
on the benchmarking process, the algorithm embedded in this system is
discriminant analysis for identifying ripeness and polynomial regres-
sion for forecasting harvest time. Both algorithms have the potential to
analyze nonlinear and nonstationary signal series generated by the in-
ductive sensor. Based on the above-mentioned considerations, the ob-
jective of this study is to develop a device capable of identifying ripe-
ness and forecasting harvest time of oil palm.

2. Materials and method
2.1. Data collection

The oil palm FFBs were harvested from 10 to 25-year-old trees from
January-February, 2019 at Cikabayan Oil Palm Plantation (IPB
University, Bogor, Indonesia) and Cikasungka PTPN VIII Oil Palm
Plantation in Bogor, Indonesia. The samples used were tenera varieties
(Elaeis guineensis Jacq. var. tenera), which were harvested at various
ages of ripeness. Based on the ripeness protocol in the oil palm plan-
tation, ripe oil palm is harvested at 151-180 days after anthesis, while
unripe oil palm is harvested at 0-150 days after anthesis. In this study, a
total of 600 oil palm fruits were harvested and grouped into two classes,
i.e., ripe (100 fruits) and unripe (500 fruits). The FFB’s samples were
classified by professional labors based on the oil palm database library
in each plantation. These entire fruit samples were used for the devel-
opment of signal processing in recognizing the age of oil palm ripeness.

2.2. Inductive sensor system

The proposed inductive sensor system is made of two stainless steel
plates that are curved with a dimension of 10 X 1 x 0.01 cm. This
sensor is connected to the electronic circuit board inside the sensing
panel to convert a signal into an equivalent electrical voltage. The fil-
tered signal is input in an ATmega328 P microcontroller (Arduino Uno,
Ivrea, Italy), which manages the whole device and runs a specially
designed processing algorithm (Fig. 2).

The basic principle of this system is that the inductive sensor is
pasted on the oil palm FFB to measure its resonant frequency. Thus, the
embedded algorithm outputs a signal related to the age of oil palm ri-
peness. The result of the ripeness evaluation by the inductive sensor
system is connected and displayed on a mobile phone using Bluetooth
Terminal HC-05 (MightyIT, Gujarat, India). Also, this system is pow-
ered by a rechargeable battery (6 V) to supply power requirements to
the system and is equipped with an adjustable stick (maximum length
of 9 m) to reach oil palm FFB. The overall components of the inductive
sensor housing are shown in Fig. 1.
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Fig. 1. Inductive sensor system.

2.3. Signal processing overview

2.3.1. Resonant frequency

The electrical diagram of the proposed inductive sensor system is
shown in Fig. 3. In RLC circuit representation, the main parameter to
identify ripeness and estimate oil palm harvest time is the resonant
frequency. This is a parameter generated from the application of the
inductive sensor. In theory, resonant frequency implies a unique fre-
quency determined by the values of the capacitance and inductance.
The resonant frequency can be determined using Eq. (1). where, f, is
resonant frequency (Hz), L is inductance (H) and C is capacitance (F).

1
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The frequency change is greatly influenced by its capacitance value,
because it is closely related to the dielectric properties of oil palm. So
that each particular age of oil palm ripeness has a distinctive resonant
frequency value. In this study, for an inductive sensor plate, its capa-
citance value is calculated using Eq. (2). Where K is constant dielectric,
A is the surface area of the plater (m?) and D is the distance between
the plates (m).

_ KA
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2.3.2. Identifying ripeness

Discriminant analysis is applied to identify oil palm FFB ripeness.
This technique is used for the classification of objects into groups, i.e.,
ripe or unripe oil palm FFB based on resonant frequency value.
Discriminant analysis is a predictive technique based on multivariate
statistical learning. This technique may be used in numerous applica-
tions, for example, in ecology (Liu et al., 2018; Nanda et al., 2018b) and
engineering field (Zhang et al., 2018). According to KocisSova and
Misankova (2014), the main task of discriminant analysis is to find the
optimal attributing rules that will minimize the likelihood of erroneous
classification elements.

After the training process identifies the characteristics of ripe and
unripe oil palm, the discriminant analysis produces a formula con-
taining the attributes of each class. This basic model of discriminant
analysis is given in Eq. (3), where d is a discriminant function, b, is
intercept, b; is coefficient, x; is variable (in this study is resonant fre-
quency) and i = 1, ...,n. In this study, discriminant analysis was per-
formed in XLSTAT version 2014.5.03 (Adinsoft) with easy built-in
package. Furthermore, the discriminant analysis model is embedded in
the oil palm ripeness detection to provide a decision.

d= b() + b1X1 + bzXz + b3X3 + .,.,+b,,xn = bo + z b(i)X(j)
i=1 3
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Fig. 3. RLC circuit in an inductive sensor system.

2.3.3. Forecasting harvest time

The proposed device is equipped with a feature to forecast the
harvest time of oil palm. This feature will work to estimate the harvest
time when the detected oil palm FFB is still in an unripe condition. This
is a new feature that is not found in various existing oil palm ripeness
detection devices. In order to forecast a harvest time, a polynomial
regression with a degree (k = 2) was implemented to examine the re-
lationship between resonant frequency (f.) and age of ripeness (A,).
The basic model of polynomial regression is as follows:
A, = by + bif? + byf, 4

After the age of ripeness is known, the harvest time (H;) can be
determined by calculating the deviation between the maximum age of
ripe oil palm (180 days) and the measured oil palm ripeness:

H; =180 — A, 5)

2.4. Performance evaluation

In this study, the type of data was divided into two sets (training and
testing) at a ratio of 8:2 using holdout validation. From a total of 600
data samples, there were 480 data for training set and 120 data for
testing set. The model performance was evaluated by comparing the
prediction results and measured values. The accuracy (A.) of the first
model, i.e. discriminant analysis for identifying the oil palm ripeness, is
calculated by using Eq. (6). This is the probability that the classification
tests yield the correct determination. Good performance is proven by
high accuracy value, where, C; is correct classification samples and N is
total samples. The second model, polynomial regression to estimate the
age of oil palm ripeness, is evaluated using root mean square error
(RMSE) and coefficient of determination (R?). A good model should
have a low RMSE and high R? (Nanda et al., 2019), where Y is the
prediction value, y, is the actual value and ), is the average predicted
value.

Gs
A, = N x 100(%) )
\1 N
RMSE = [= Y (&, — )?
\/N Zl ’ %)
N
o zjil 0p =%
Zi:l (yp - .Vm)z (8)

In addition, in order to determine the real performance of our
system, we performed a blind field test-driven by the third-party eva-
luator at Cikabayan and Cikasungka Oil Palm Plantation. At this stage,
the proposed device was tested to identify ripeness and forecast harvest
time. A total of 55 FFBs in various ages of ripeness were used in this
blind test. The inductive sensor system was touched at one point around
the central area of FFB to make a decision on its maturity status. As a
correctness reference, the oil palm database libraries in each plantation
supervised by professional labors, were used to validate the measure-
ment results of the inductive sensor system.

3. Results
3.1. Inductive sensor characteristics

The characteristics of the inductive sensor were evaluated. Based on
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Fig. 4. Inductive sensor characteristics in various ages of ripeness.

the analysis, the riper the fruit is, the lower its resonance frequency and
the higher its capacitance (Fig. 4). These results confirm that the re-
sonant frequency and capacitance are inversely proportional in ac-
cordance with Eq. (1). However, in contrast to the research conducted
by Misron et al. (2017), they explained that the more mature the fruit,
the higher its resonance and the lower its capacitance. This difference is
caused by each instrumentation having specific electrical character-
istics that can lead to distinct output conversion results. For example,
this study was performed in low frequency (270-500 Hz), while the
previous research conducted by Misron et al. (2017) was applied in
high frequency (8.5-9.8 MHz). Nevertheless, the most critical aspect in
the development of oil palm ripeness detection is the close relationship
between signal characteristics against the fruit ripeness level.

3.2. Proposed algorithm

3.2.1. Identifying ripeness

The discriminant analysis was developed to identify the oil palm
FFB ripeness. Fig. 5 shows the training process of discriminant analysis
between two principal components (PC; and PC,) to recognize the ripe
and unripe FFB. As can be seen, each class has a centroid to create
optimal boundaries. Visually, the two classes can be separated at the
expense of overlapping data. Based on the analysis, the models re-
presenting the overall characteristics of each class are defined in Eq. (9)
for ripe and Eq. (10) for unripe. These are valuable property,

»

® Ripe
o Unripe

o Centroids

w £ (9]
4
1

Ripe

PCy t t + |

Fig. 5. Discriminant analysis simulation in classifying ripe and unripe of oil
palm.
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Table 1
Confusion matrix for the cross-validation results.

From \ to Ripe Unripe Total Accuracy (%)
Ripe 15 1 16 93.75 %
Unripe 8 96 104 92.31 %
Total 23 97 120 92.50 %

successfully issued by discriminant analysis. The main rule in this
model is that we classify the class (i.e., ripe or unripe) corresponding to
the model that gives the greatest value. For example, by inputting the f,
value, if ripe > unripe, then the observation is grouped into ripe.
Moreover, these models can be implemented for the inductive sensor
system for identifying a new observation. To test the model perfor-
mance, we apply the cross-validation technique using 120 testing data
sets. Based on the analysis, the discriminant analysis model achieves
92.50 % of accuracy (Table 1). This indicates that the model is ap-
plicable to be embedded in the system in providing fast and accurate
decisions.

Ripe = —39.3284 + 0.1903f, 9)

Unripe = —22.6083 + 0.1388f, (10)

3.2.2. Forecasting harvest time

The core step to predict harvest time is tracing the age of ripeness
first. The polynomial regression is applied to build a model that can
estimate the age of ripeness. First, the entire training data sets are
averaged and grouped into six major ripeness ages, i.e., 30, 60, 90, 120,
150 and 180 days after anthesis. From the various methods used, this
method produced the highest R? (0.763). Fig. 6 shows the relationship
between resonant frequency and age of ripeness. Visually, the lower the
resonant frequency, the riper the oil palm FFB. Thus, the age of ripeness
can be predicted using a mathematical model of A, generated by
polynomial regression. To test the model performance, we calculate the
error prediction of testing data set between the actual and estimated
value using RMSE. Based on the analysis, the polynomial regression
achieved an RMSE of 21.37 for forecasting the age of ripeness.

3.3. Blind field test

The successfully-developed model is then embedded and integrated
into the inductive sensor system. This device was tested blindly in the
field to obtain the circumstances of its performance. Fig. 7 shows the
user evaluating each FFB. The measurement results are analyzed in the

200
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® Data
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120 - A,=65.393 - 0.0027f,2 + 1.197f,
R2=0.763

100
80 -
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Age of ripeness, 4, (day)

40

20 -

0 100 200 300 400 500

Resonant frequency, f, (Hz)

Fig. 6. Resonant frequency value at various age of oil palm ripeness.
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Fig. 7. (a) The user attaches the inductive sensor to the FFB; (b) the system
analyzes the resonant frequency (c) the FFB evaluation results on the mobile
phone user interface.

signal processing panel and the results are displayed on a mobile phone
using Bluetooth technology. In the user interface design, we have a
simplified measurement result that is easily understood by the human
domain. If the computational result displays a minus value, then FFB is
ripe. Vice versa, if the computational result displays a positive value,
then FFB is unripe; and this positive value also shows the estimated
harvest. For example, if the FFB measurement result is 45, then this FFB
is grouped as unripe and it can be harvested 45 days later.

A total of 55 FFBs were prepared to test the inductive sensor system
in identifying oil palm ripeness and forecasting harvest time. Based on
the analysis, the proposed system is able to correctly identify the entire
ripe and unripe status of oil palm FFB (Fig. 8). Therefore, the accuracy
of this system to determine oil palm ripeness is 100 %. Furthermore,

Actual value
Ripe Unripe

Q) 8..
2 ¥
©
>
O
9
0
§®)
e 2
o ¢

)

Fig. 8. Confusion matrix of inductive sensor system in identifying oil palm ri-
peness.
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there were 43 FFBs identified as unripe, and this device will forecast the
harvest time automatically. This study confirms that the inductive
sensor system can predict harvest time with 13.45 of RMSE (Fig. 9). The
overall results showed acceptable performance both in model simula-
tion and blind field test. We are optimistic that this new feature in-
stalled in this device is required for optimal precision in the oil palm
harvesting.

4. Discussion

Oil palm ripeness detection is crucial decision-making information
in harvesting, because this will lead to company profits and market-
ability of the product. If oil palm is harvested in overripe conditions, it
has high free fatty acids, which contribute to lower oil content
(Junkwon et al., 2009). Conversely, if oil palm is harvested in unripe
conditions, then the oil content is still low. Therefore, oil palm must be
collected at the right time, which is 151-180 days after anthesis. As
discussed in the introduction section, the conventional harvesting
method involves manual detection by counting a number of loosened
fruits per bunch (Makky and Soni, 2014). Such method is subjective and
tends to be erroneous. Also, it is a time-consuming and labor-intensive
process, resulting in bias and risk of human error. Therefore, there is an
opportunity for the development of a reliable, rapid and accurate oil
palm ripeness detection device.

This study developed a simple, non-invasive, inductive sensor
system for identifying ripeness and forecasting harvest time in oil palm
FFB. The inductive sensor system in-conjunction with discriminant
analysis and polynomial regression could determine the oil palm ripe-
ness with a 100 % accuracy and forecast the harvest time with RMSE of
13.45, respectively. This system enhances various existing oil palm ri-
peness detection devices through new features, i.e., the ability to
forecast harvest time.

The performance of the proposed system is comparable with various
sophisticated oil palm ripeness detection technologies. The various
technologies and their performances are summarized as follows: (1)
based on visible-near infrared sensor, Saeed et al. (2012) can detect oil
palm maturity with 85 % of accuracy; (2) based on machine vision
system, Abdullah et al. (2001) reported their triumph in detecting oil
palm maturity up to 100 % of accuracy; (3) based on image processing
analysis, Alfatni et al. (2014) can identify oil palm ripeness with an
accuracy of 95 %. Also, there were some attractive studies regarding the
identification of oil palm ripeness, but its performance was not
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mentioned, including near-infrared spectroscopy (Makky and Soni,
2014), image vision (Cherie, 2015) and inductive sensor (Aliteh et al.,
2018; Harun et al., 2013; Misron et al., 2017, 2014). Also, these so-
phisticated devices have only shown success in simulating oil palm ri-
peness mathematical models on the laboratory scale, wherein their
feasibility in the field is still questionable. In contrast this study, we
have proven that the inductive sensor system works appropriately, not
only in mathematical model simulation, but also in-field testing.

In this study, the inductive sensor system can prove several benefits,
namely (i) rapid detection, computation process is less than 1s, (ii)
ergonomy, the device is equipped with an adjusted stick (9 m of height)
to harvest FFB and the measurement result is displayed via a mobile
phone using Bluetooth technology, (iii) forecasting harvest time, if FFB
is still unripe, it can predict harvest time, (iv) accuracy, the proposed
device is able to identify the oil palm ripeness with an accuracy of 100
% and forecast the harvest time with RMSE of 13.45. Ultimately, this
inductive sensor system has promising potential to lead to the effective
and efficient management of oil palm harvesting.

5. Conclusion

This study developed and evaluated the implementation of an in-
ductive sensor system for oil palm ripeness identification. The resonant
frequency value derived from the inductive sensor was used for the
development of the intelligent algorithms, i.e., discriminant analysis for
identifying ripeness and polynomial regression for forecasting harvest
time. Based on the performance in the blind field test, the proposed
system can determine the oil palm ripeness with a 100 % accuracy and
forecast the harvest time with RMSE of 13.45. These results indicate
that the inductive sensor system has the potential to be applied in
evaluating oil palm harvesting due to its various advantages, i.e., being
accurate, rapid and non-invasive.
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