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Embryo ploidy status classification through
computer-assisted morphology assessment
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BACKGROUND: Preimplantation genetic testing for aneuploidy has been proven to be effective in determining the embryo’s chromosomal or
ploidy status. The test requires a biopsy of embryonic cells on day 3, 5, or 6 from which complete information on the chromosomes would be
obtained. The main drawbacks of preimplantation genetic testing for aneuploidy include its relatively invasive approach and the lack of research
studies on the long-term effects of preimplantation genetic testing for aneuploidy.
OBJECTIVE: Computer-assisted predictive modeling through machine learning and deep learning algorithms has been proposed to minimize
the use of invasive preimplantation genetic testing for aneuploidy. The capability to predict morphologic characteristics of embryo ploidy status
creates a meaningful support system for decision-making before further treatment.
STUDY DESIGN: Image processing is a component in developing a predictive model specialized in image classification through which a
model is able to differentiate images based on unique features. Image processing is obtained through image augmentation to capture segmented
embryos and perform feature extraction. Furthermore, multiple machine learning and deep learning algorithms were used to create prediction-
based modeling, and all of the prediction models undergo similar model performance assessments to determine the best model prediction
algorithm.
RESULTS: An efficient artificial intelligence model that can predict embryo ploidy status was developed using image processing through a his-
togram of oriented gradient and then followed by principal component analysis. The gradient boosting algorithm showed an advantage against
other algorithms and yielded an accuracy of 0.74, an aneuploid precision of 0.83, and an aneuploid predictive value (recall) of 0.84.
CONCLUSION: This research study proved that machine-assisted technology perceives the embryo differently than human observation and
determined that further research on in vitro fertilization is needed. The study finding serves as a basis for developing a better computer-assisted
prediction model.

Key words: artificial intelligence, image processing, in vitro fertilization, noninvasive embryo assessment, preimplantation genetic testing for
aneuploid, ploidy status, prediction model
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Why was this study conducted?
Because of the lack of studies on preimplantation genetic testing for aneuploid
(PGT-A) treatment, an alternative to the invasive PGT-A method is needed.

Key findings
Using computer-assisted technology to assess embryo ploidy status is doable;
however, there is a limitation to the quantity of datasets being used. Neverthe-
less, computer-assisted technology can be adopted for decision support of a non-
invasive PGT-A.

What does this add to what is known?
Computer-assisted technology for the assessment of ploidy status has been
developed; however, computer-generated prediction is not dependable, and
medical personnel is still required to assess the results.
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multiple-embryo transfer and a preim-
plantation embryo selection, which is a
crucial part of this process.
Embryo selection based on ploidy

status has been proven to be effective in
reducing the risk of miscarriage while
increasing the implantation rate.1,2

Ploidy status is assessed through preim-
plantation genetic testing for aneu-
ploidy (PGT-A), which accurately
specifies the chromosome number in
biopsied embryonic cells.3 However,
embryo biopsy holds unknown risks on
the safety of embryo development
before and after implantation,4,5 and
studies are limited to support the nor-
malcy of PGT-A−assessed embryos at
birth or early childhood.6,7

Noninvasive methods, such as image
processing, could be used to differenti-
ate morphologic differences. Machine
learning (ML) and deep learning (DL),
parts of artificial intelligence (AI), could
overcome the limitations of conven-
tional human observation3,8 to predict
the ploidy status of embryos based on
morphologic differences. ML and DL
have been successful in classifying
images according to various medical
image domains, such as blastocyst mor-
phologic quality,9,10 embryo develop-
ment stages,11,12 and implantation
potential.13

Materials and Methods
Dataset
Data sources were obtained from the
Morula IVF Jakarta Clinic, Jakarta,
Indonesia, using 2 separate extraction
2 AJOG Global Reports August 2023
methods: static image extraction from
time-lapse videos recorded through a
closed incubator system (MIRI time-
lapse incubators) (37°C, 6% CO2, and
5% O2) and direct image extraction cap-
tured using an inverted microscope
(Olympus IX71 or Nikon Eclipse Ti,
Japan). By combining 483 couples, we
were able to obtain 1123 embryo sam-
ples. The ploidy status of all embryo
samples was determined through PGT-
A, with baseline and clinical characteris-
tics shown in Supplemental Table.

Image reduction was performed to
the dataset, consisting of images in
which the embryos were not fully cap-
tured, images containing additional
objects attached to the embryo (eg,
holding or biopsy pipette), and unclear
images. This ML approach was per-
formed through supervised learning,
with known embryo ploidy classifica-
tions, such as euploid, aneuploid, or
mosaic. This research was split into 2
case studies, with case study 1 employ-
ing 3 classifications—euploid, aneu-
ploid, and mosaic—and case study 2
using binary classification. In binary
classification, aneuploid and mosaic
embryos were both categorized into 1
classification14 against the euploid clas-
sification. This research did not use
image duplicates or multiplication;
hence, each image was unique. Figure 1
shows the data distribution for each
class. A total of 865 blastocyst images
were used. The dataset was divided into
training and testing sets with an 80:20
split. Separate training and testing
datasets would produce unbiased
results, especially in cases with limited
datasets.15,16

Preimplantation genetic testing for
aneuploid laboratory protocol
Embryo biopsy was performed as previ-
ously described in Polim et al’s17 study.
Briefly, a trophectoderm biopsy was per-
formed on day 5 or 6, depending on the
embryologist’s assessment regarding the
blastocyst quality. Of note, 3 to 5 cells of
Trophectoderm (TE) were biopsied and
transferred into a sterile microcentrifuge
tube containing phosphate-buffered saline
solution (Cell Signaling Technologies,
Danvers, MA), which was supplemented
with 1% polyvinylpyrrolidone (Origio).
The samples were stored at �20°C before
further use of genetic analysis. Whole-
genome amplification was performed
using the SurePlex DNA Amplification
System (Illumina, San Diego, CA). The
Veriseq PGS-MiSeq kit (Illumina, San
Diego, CA) was used for the Next-genera-
tion sequencing (NGS) procedure, and
the MiSeq sequencer (Illumina, San
Diego, CA) was used for sequencing.
Data interpretation used the BlueFuse
Multi Software (version 4.5; Illumina, San
Diego, CA; 32178). The threshold for call-
ing mosaic was a 30% to 80% mixture of
euploid and aneuploid cells (<30% was
euploid, and >80% was aneuploid).

Methods
In developing the prediction model,
performing feature extraction to obtain
a unique differentiator in each classifi-
cation became a significant step. Figure 2
illustrates the step-by-step approach to
developing the AI model.

Image preprocessing
Image preprocessing was proposed to
be beneficial toward AI model perfor-
mance, reduce the possibility of any
interference from the image back-
ground, and capture important infor-
mation about an image object.18

Image segmentation was performed
to minimize noise and dark fields sur-
rounding the embryo and remove any
interfering objects. This procedure was
proposed to improve morphologic anal-
ysis and to reduce the possibility of
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FIGURE 1
Data distribution
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misclassification because of interfering
objects.19 Figure 3 shows a detailed pro-
cess of image augmentation.

1. Original data: A copy image of an
embryo was generated. During the
augmentation process, both the
original and copy images were used.
The copy image was used for the
augmentation process and to make
changes to complement the follow-
ing process while still keeping the
original image for further use.

2. Strip alpha channel: The alpha
channel or transparency density
should be normalized for all images.
Maximizing the value of the alpha
channel would eliminate the pixel
transparency differences within the
image.

3. Image blurring: Image blurring was
used to eliminate any pixel degrada-
tion.

4. Color enhancement: The foreground
(image object) and background were
distinguished through color
enhancement to intensify color dif-
ferences. This approach was
achieved through a color balance
algorithm,20 in which a high-con-
trast color balance was applied.

5. Gray scale: The colored image was
converted to gray scales to deter-
mine the image threshold.

6. Image blurring: The second stage of
image blurring was performed to
complement pixel degradation after
conversion to gray scale.

7. Thresholding: Thresholding was per-
formed to produce binary images and
differentiate the image foreground
from the image background.21,22

8. Masking and padding: Masking and
padding were applied to the original
image with the threshold image as
the mask parameter, which would
be used to segment the embryo
images.23

9. Image to center: Before finding the
image centroid and extreme vertical
and horizontal alignment, moving
the embryo object into the center of
the canvas or frame is important.

10. Detect centroid and extreme coordi-
nate: Detect centroid and extreme
coordinate determine the coordi-
nates of the center-weighted
embryo: most outer left, right, top,
and bottom of the embryo.

11. Calculate embryo orientation: Calculat-
ing the embryo orientation uses a slope
function to determine the vertical and
horizontal gradients, establishing
embryo orientation and the rotational
degree needed to align the embryo.

slope ¼ y2 � y1
x2 � x1

ð1Þ

12. Rotate image and center image:

Rotate image and center image
apply the rotational degree obtained
from the image orientation calcula-
tion with the image centroid as the
center point and reapply the image
to the center step to designate the
embryo at the middle of the frame.
August 2023 AJOG Global Reports 3
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FIGURE 2
Research workflow
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Feature extraction

Convolutional feature extraction. Con-
volutional feature extraction adopted the
convolutional neural network (CNN)
model architecture. It has a similar
approach to the DL method.24,25 Adjust-
ment was made before the output layer
to foresee the possibility of performing
the classification with ML algorithms.
This method used a convolutional func-
tion; therefore, feature transformation
holds similar characteristics to CNN
images. The advantage of convolution
feature extraction is its ability to map
spatial and temporal correlations in
image data.26 This approach enables us
to use pretrained model architecture to
produce image features. Here, VGG19,27

DenseNet,28 and ResNet29 pretrained
models were used.

Histogram of oriented gradient and
feature reduction. Images were con-
verted into dimensional arrays and then
became image feature descriptors, with
each array cell represented by pixel val-
ues. Using the histogram of oriented
gradient (HOG) algorithm, the gray-
scale image was denoted as a 2-
4 AJOG Global Reports August 2023
dimensional array. The HOG works by
subsequently dividing the dimensional
array into small spatial regions and then
producing pixel orientation toward its
surrounding pixels.30,31 The combina-
tion of pixel orientation for each region
will produce an image that will show
features of an image in a gradient field
perspective.

The massive number of features
extracted from an image could lead to
an overwhelming process of informa-
tion. Feature reduction is a method to
merge multiple variables into smaller
numbers of variables. Principal compo-
nent analysis (PCA) is a variable reduc-
tion process through dimensionality
reduction to extract the most important
information from the image or features
and compress the size of the image
without losing significant information
about the features.32,33

Model prediction
This study adopted multiple AI
approaches and assessed the perfor-
mance of each model, ultimately identi-
fying the model with the most optimal
prediction results. Although CNN is
considered a state-of-the-art prediction
model, it has a disadvantage because it
requires a massive dataset to achieve
appropriate outcomes. In contrast, the
earlier generations of ML techniques
were more suited to a lower amount of
datasets. Thus, the size of the available
dataset is crucial in determining the
optimal approach. This study deployed
5 ML algorithms and 1 DL approach.
Each approach had different condi-
tional input-output requirements yet
served similar purposes nonetheless.
Convolutional neural network. A DL
approach for a prediction model con-
sists of a multilayer perceptron in which
each layer produces mathematical cal-
culations concerning the final classifica-
tion outcome. The CNN model was
specifically developed for image classifi-
cation. The convolutional layer within
the model contributed to image feature
extraction for the CNN model.
Decision tree. A decision tree (DT) is a
supervised ML approach used to
develop a prediction model based on a
derivative function. A DT serves as a
rule-based predictor that uses a
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FIGURE 3
Image augmentation
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combination of parameters and deriva-
tive functions for a linear decision rule.

Random forest. A random forest (RF) is
an extension of a DT, which essentially
functions by combining multiple
smaller trees to create a single giant
tree.

Gradient boosting. Gradient boosting
(GB) is an extension of a DT with a
regression function to create the next
iteration of the decision rule.

Support vector machine. A supervised
ML approach uses linear or nonlinear
relationships to differentiate various
classifications. Image classification
using a support vector machine (SVM)
achieved a higher accuracy and better
performance compared with DT and
RF algorithms.34
Logistic regression. Logistic regression
(LR) is a supervised ML approach that
uses a linear relationship among differ-
ent classes. Generally, LR and SVM
operate similarly on classification algo-
rithms. One of the main differences
between LR and SVM is the mathemati-
cal approach they use. The LR approach
is based on statistical properties,
whereas the SVM approach is based on
geometrical properties.
Model performance assessment
Standardization was imperative for the
model performance analysis; accuracy,
recall, precision, and F1 from each
model were evaluated to measure the
model performance. Multiple assess-
ment is necessary to determine the pre-
diction model with the most optimal
performance. The implementation of
multiple matrix calculation is needed as
it holds different advantages and disad-
vantages in interpreting a model perfor-
mance, as there is no golden standard
for calculating model performance.
Accuracy

accuracy

¼ TP þ TNð Þ
TP þ FP þ TN þ FNð Þ ð2Þ

Accuracy is a performance matrix
that considers all conditional matrices
as equal contributors. In the case of a
balanced dataset, accuracy would yield
a general report on the model perfor-
mance on prediction tasks. However, in
the case of an imbalanced dataset, fur-
ther performance matrix measurements
should be considered. The accuracy
matrix is an early indicator to describe a
August 2023 AJOG Global Reports 5
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model’s performance, yet it cannot be
used as a benchmark for the overall
model performance.

Recall

recall ¼ sensitivity ¼ TP
TP þ FN

ð3Þ

An imbalanced dataset affects a mod-
el’s performance in predicting binary or
multiclass classification, and recall
would be beneficial for this issue. Recall
works on predicting a classification
without caring whether the other classi-
fication is mislabeled. This means that
the recall matrix is a way to ignore false
classifications while keeping high chan-
ces of catching all targeted classifica-
tions.

Precision

precision ¼ specificity

¼ TP
TP þ FP

ð4Þ

The precision matrix measures the
model performance in classifying a
TABLE 1
Model performance

No. Model A
Case study 1

1 DenseNet121 (SVM) 0

2 VGG16 (CNN) 0

3 DT (HOG-PCA256) 0

4 Logistic regression (HOG-PCA256) 0

5 Random forest (HOG-PCA256) 0

Case study 2

6 DenseNet121 (CNN) 0

7 DenseNet121 (SVM) 0

8 DenseNet169 (CNN) 0

9 DT (HOG-PCA256)a 0

10 Gradient boosting (HOG-PCA256)a 0
CNN, convolutional neural network; HOG, histogram of oriented gr
a Top 2 models from recall & accuracy model assessment.

Danardono. Ploidy status classification. Am J Obstet Gynec
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prediction as a correct positive predic-
tion. Although the recall matrix disre-
gards mislabeled classification, the
precision matrix recognizes misclassifi-
cations and calculates the reliability of
the model in making predictions.
F1 and weighted F1
The F1-score is used to compute a har-
monic combination of precision and
recall. If both precision and recall values
are low, it will produce low F1-scores,
and vice versa. The F1 score complies
with a specific prediction output,
whereas the weighted F1-score observes
a proportionate prediction per classifi-
cation over the total data sample.

F1 ¼ 2 x
precision x recall
precisionþ recall

ð5Þ

Weighted F1

¼
X nsample

npopulation
x F1sample

� �
ð6Þ
Result
Our research study used AI to predict
an embryo’s ploidy status by using an
ccuracy Euploid predicted value Aneuploid

.42 0.05 0.75

.43 0.07 0.78

.40 0.07 0.69

.39 0.40 0.35

.41 0.02 0.55

.58 0.14 1.00

.56 0.00 1.00

.44 0.07 1.00

.70a 0.50a 0.75a

.74a 0.33a 0.84a

adient; SVM, support vector machine; PCA, Principal Component Analy

ol Glob Rep 2023.
augmented image while maintaining
the original embryo information. Subse-
quently, we conducted an assessment to
identify models with the highest perfor-
mance as presented in 2 case study
comparisons.
Table 1 shows that the euploid-aneu-

ploid classification (case study 2) was
distinguished remarkably compared
with the euploid-aneuploid-mosaic clas-
sification (case study 1). Low accuracy
scores in case study 1 indicated that
almost all of the models did not achieve
the appropriate euploid predictive
scores. In contrast, in case study 2, the
models had fewer tasks while perform-
ing binary classification, which led to a
superior model performance as it
reduced the classification option and
increased the probability of prediction.
The top 2 models from case study 2

achieved significant accuracy scores of
0.70 and 0.74 using DT and GB algo-
rithms, respectively. Table 2 shows that
the GB model has a lower precision
matrix with a higher F1-score matrix for
predicting aneuploid embryos. Figure 4
shows the receiver operating character-
istic (ROC) curve and precision-recall
graph, with the GB algorithm slightly
Recall

predictive value Mosaic predicted value

0.60

0.46

0.23

0.44

0.35

—
—
—
—
—

sis.
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TABLE 2
Model performance
No. Model Prediction Precision F1-score Weighted F1-score

1 Decision tree (HOG-PCA256) Aneuploid 0.85 0.80 0.72

Euploid 0.35 0.41

2 Gradient boosting (HOG-PCA256)a Aneuploid 0.83a 0.83a 0.73a

Euploid 0.35a 0.34a

HOG, histogram of oriented gradient; PCA, Principal Component Analysis.
a Top model performance.

Danardono. Ploidy status classification. Am J Obstet Gynecol Glob Rep 2023.
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having a higher area under the curve
(AUC) than the DT algorithm. The
AUC calculates the region under the
curve, with greater value yielding a bet-
ter general model performance. The
ROC curve observes the relationship
between the true positive rate (sensitiv-
ity) and the false positive rate (1-speci-
ficity), and the precision-recall graph
observes the relationship between preci-
sion and recall.
In developing prediction models with

class imbalance, multiple matrix analy-
sis was considered. A high confidence
level for the prediction is important.
Here, the most robust prediction

model, based on recall, precision, and
FIGURE 4
ROC and precision—recall graph

ROC, receiver operating characteristic.

Danardono. Ploidy status classification. Am J Obstet Gynecol G
F1-score for predicting aneuploid
embryos, was developed using the GB
algorithm and featured extraction using
the HOG and then followed by the
PCA. An optimal model should be able
to classify different classes with similar
accuracy, precision, and recall. In con-
trast, the performance of our model was
still imbalanced with a bias toward one
of the classifications. This model could
be used to predict an aneuploid embryo,
with a side note on the use of the model.
When the model produces an euploid
prediction, further tests should be per-
formed to validate the real ploidy out-
come. This approach will result in
increasing the probability of finding a
lob Rep 2023.
euploid embryo while reducing the
number of embryos going through the
PGT-A test.
Discussion
This study demonstrated the use of AI
in providing an alternative noninvasive
determination of embryo chromosomal
ploidy status. Our model could differen-
tiate morphologic differences between
euploid and aneuploid-mosaic embryos
with an overall accuracy of 0.74, preci-
sion of 0.83 for aneuploid precision,
and aneuploid prediction value of 0.84.
Computer-assisted technology has been
around in the medical field to assist
healthcare personnel during decision-
making to proceed further with treat-
ment. In our research, we observed that
a recall value higher than 0.90 was
caused by the overfitting of the model.
Overfitting can be caused primarily by
insufficient data, model complexity, or
both, further exacerbating the effects.
Although a recall value close to 0.00
was caused by the underfitting of the
model because of an imbalanced and
low dataset, a low and imbalanced data
might cause a biased classification on
account of the lesser amount of euploid
August 2023 AJOG Global Reports 7
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embryos compared with mosaic and
aneuploid embryos.
A previous study by Chavez-Badiola

et al35 has demonstrated the possibility
of using an AI model to predict embryo
ploidy status with an accuracy of 0.70,
an euploid (positive) predictive value of
0.79, and an aneuploid (negative) pre-
dictive value of 0.66. The datasets used
were embryo images with known ploidy
and implantation status, split into 2
groups, that is, euploid and/or success-
ful implantation and aneuploid and/or
implantation failure.
VerMilyea et al23 proposed an AI

model to predict embryo viability based
on Gardner scoring. The classification
was split between viable and nonviable
embryos with a Gardner score of 50%
as the benchmark.36 A similar method-
ology was adopted by Diakiw et al37 to
predict the ploidy status with adjust-
ments on VerMilyea’s approach for
image preprocessing. Of note, 15,192
embryo images with known ploidy sta-
tus were fed to the CNN to create a pre-
diction model with multiple embryo
classifications. Low mosaic embryos
were grouped as euploid, and high
mosaic embryos were grouped as aneu-
ploid. The AI model did not specifically
differentiate embryo ploidy. Diakiw et
al’s37 AI model had an overall accuracy
of 65.4% and a sensitivity of 97.3%.
Barnes et al38 combined the embryo

parameters to identify the most optimal
model performance. Model parameters
of the image, maternal age, morphoki-
netics, and Blastocysts (BL) score
yielded the most ideal model perfor-
mance with a higher AUC value of
0.7614 and a lower accuracy of 69.68%,
compared with a model with similar
parameters, which excluded morphoki-
netics, obtaining a lower AUC of 0.7558
and a higher accuracy of 70.23%.
Currently, Berntsen et al39 used the

greatest number of 115,832 embryo
datasets with known implantation data
or known fetal heartbeat or known
ploidy status for AI-based prediction
modeling. Eventually, the datasets were
classified into 2 categories: fetal heart-
beat positive and fetal heartbeat nega-
tive (FH�). They achieved an
astonishing result, an AUC of 0.95
8 AJOG Global Reports August 2023
when multivariables were calculated,
and the discarded embryos were pseu-
dolabeled as FH�.

To date, noninvasive AI models are
still inferior to invasive genetic testing
in predicting an embryo’s ploidy status.
Further scrutiny on the possibility to
use ML prediction models as an alterna-
tive to PGT-A is imperative. The end
goal is to create a robust model with
high confidence and accuracy in pre-
dicting the ploidy status of embryos.
Although the state-of-the-art technol-
ogy for prediction models is an ongoing
development, existing models could be
modified and enhanced to perform spe-
cific prediction tasks.

Conclusion
We have developed a computer-assisted
ML model that noninvasively predicts
ploidy status. Particularly, our model
has the ability to predict aneuploid
embryos with high confidence levels. In
contrast, our model lacks the capacity
to classify euploid embryos. Possessing
a 1-sided classification comes with the
advantage of being able to draw conclu-
sions about a specific class and disre-
gard the other classification. Ultimately,
our result has significantly proven the
model’s ability to predict ploidy status
by using day 5 or 6 embryo image fea-
tures with a minimum dataset. In our
study, the embryo dataset, a major key
aspect in constructing the ML model,
was imbalanced, which influenced our
model performance significantly. To
date, the efficacy of PGT-A in determin-
ing the true complete chromosome sta-
tus is unmatched by any noninvasive
ML approaches. AI in the medical field
would gradually advance with the con-
tinuous growth of available datasets to
train the model. Prospectively, the study
authors would continue to gather avail-
able datasets, minimize the gap between
imbalanced classes, and conduct an
external validation process. &
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